16,703 research outputs found

    Doubly Special Relativity with a minimum speed and the Uncertainty Principle

    Full text link
    The present work aims to search for an implementation of a new symmetry in the space-time by introducing the idea of an invariant minimum speed scale (VV). Such a lowest limit VV, being unattainable by the particles, represents a fundamental and preferred reference frame connected to a universal background field (a vacuum energy) that breaks Lorentz symmetry. So there emerges a new principle of symmetry in the space-time at the subatomic level for very low energies close to the background frame (vVv\approx V), providing a fundamental understanding for the uncertainty principle, i.e., the uncertainty relations should emerge from the space-time with an invariant minimum speed.Comment: 10 pages, 8 figures, Correlated paper in: http://www.worldscientific.com/worldscinet/ijmpd?journalTabs=read. arXiv admin note: substantial text overlap with arXiv:physics/0702095, arXiv:0705.4315, arXiv:0709.1727, arXiv:0805.120

    A Ring of Warm Dust in the HD 32297 Debris Disk

    Full text link
    We report the detection of a ring of warm dust in the edge-on disk surrounding HD 32297 with the Gemini-N/MICHELLE mid-infrared imager. Our N'-band image shows elongated structure consistent with the orientation of the scattered-light disk. The Fnu(11.2 um) = 49.9+/-2.1 mJy flux is significantly above the 28.2+/-0.6 mJy photosphere. Subtraction of the stellar point spread function reveals a bilobed structure with peaks 0.5"-0.6" from the star. An analysis of the stellar component of the SED suggests a spectral type later than A0, in contrast to commonly cited literature values. We fit three-dimensional, single-size grain models of an optically thin dust ring to our image and the SED using a Markov chain Monte Carlo algorithm in a Bayesian framework. The best-fit effective grain sizes are submicron, suggesting the same dust population is responsible for the bulk of the scattered light. The inner boundary of the warm dust is located 0.5"-0.7" (~65 AU) from the star, which is approximately cospatial with the outer boundary of the scattered-light asymmetry inward of 0.5". The addition of a separate component of larger, cooler grains that provide a portion of the 60 um flux improves both the fidelity of the model fit and consistency with the slopes of the scattered-light brightness profiles. Previous indirect estimates of the stellar age (~30 Myr) indicate the dust is composed of debris. The peak vertical optical depths in our models (~0.3-1 x 1e-2) imply that grain-grain collisions likely play a significant role in dust dynamics and evolution. Submicron grains can survive radiation pressure blow-out if they are icy and porous. Similarly, the inferred warm temperatures (130-200 K) suggest that ice sublimation may play a role in truncating the inner disk.Comment: ApJ accepted, 8 pages, 4 figure

    Reusable Agena study. Volume 2: Technical

    Get PDF
    The application of the existing Agena vehicle as a reusable upper stage for the space shuttle is discussed. The primary objective of the study is to define those changes to the Agena required for it to function in the reusable mode in the 100 percent capture of the NASA-DOD mission model. This 100 percent capture is achieved without use of kick motors or stages by simply increasing the Agena propellant load by using optional strap-on-tanks. The required shuttle support equipment, launch and flight operations techniques, development program, and cost package are also defined

    Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and Estimation of Spike Timing

    Get PDF
    AbstractOptical approaches for tracking neural dynamics are of widespread interest, but a theoretical framework quantifying the physical limits of these techniques has been lacking. We formulate such a framework by using signal detection and estimation theory to obtain physical bounds on the detection of neural spikes and the estimation of their occurrence times as set by photon counting statistics (shot noise). These bounds are succinctly expressed via a discriminability index that depends on the kinetics of the optical indicator and the relative fluxes of signal and background photons. This approach facilitates quantitative evaluations of different indicators, detector technologies, and data analyses. Our treatment also provides optimal filtering techniques for optical detection of spikes. We compare various types of Ca2+ indicators and show that background photons are a chief impediment to voltage sensing. Thus, voltage indicators that change color in response to membrane depolarization may offer a key advantage over those that change intensity. We also examine fluorescence resonance energy transfer indicators and identify the regimes in which the widely used ratiometric analysis of signals is substantially suboptimal. Overall, by showing how different optical factors interact to affect signal quality, our treatment offers a valuable guide to experimental design and provides measures of confidence to assess optically extracted traces of neural activity

    Trapped and marginally trapped surfaces in Weyl-distorted Schwarzschild solutions

    Full text link
    To better understand the allowed range of black hole geometries, we study Weyl-distorted Schwarzschild solutions. They always contain trapped surfaces, a singularity and an isolated horizon and so should be understood to be (geometric) black holes. However we show that for large distortions the isolated horizon is neither a future outer trapping horizon (FOTH) nor even a marginally trapped surface: slices of the horizon cannot be infinitesimally deformed into (outer) trapped surfaces. We consider the implications of this result for popular quasilocal definitions of black holes.Comment: The results are unchanged but this version supersedes that published in CQG. The major change is a rewriting of Section 3.1 to improve clarity and correct an error in the general expression for V(r,\theta). Several minor errors are also fixed - most significantly an incorrect statement made in the introduction about the extent of the outer prison in Vaidya. 17 pages, 2 figure

    Medication adherence in patients with myotonic dystrophy and facioscapulohumeral muscular dystrophy

    Get PDF
    Myotonic dystrophy (DM) and facioscapulohumeral muscular dystrophy (FSHD) are the two most common adult muscular dystrophies and have progressive and often disabling manifestations. Higher levels of medication adherence lead to better health outcomes, especially important to patients with DM and FSHD because of their multisystem manifestations and complexity of care. However, medication adherence has not previously been studied in a large cohort of DM type 1 (DM1), DM type 2 (DM2), and FSHD patients. The purpose of our study was to survey medication adherence and disease manifestations in patients enrolled in the NIH-supported National DM and FSHD Registry. The study was completed by 110 DM1, 49 DM2, and 193 FSHD patients. Notable comorbidities were hypertension in FSHD (44 %) and DM2 (37 %), gastroesophageal reflux disease in DM1 (24 %) and DM2 (31 %) and arrhythmias (29 %) and thyroid disease (20 %) in DM1. Each group reported high levels of adherence based on regimen complexity, medication costs, health literacy, side effect profile, and their beliefs about treatment. Only dysphagia in DM1 was reported to significantly impact medication adherence. Approximately 35 % of study patients reported polypharmacy (taking 6 or more medications). Of the patients with polypharmacy, the DM1 cohort was significantly younger (mean 55.0 years) compared to DM2 (59.0 years) and FSHD (63.2 years), and had shorter disease duration (mean 26 years) compared to FSHD (26.8 years) and DM2 (34.8 years). Future research is needed to assess techniques to ease pill swallowing in DM1 and to monitor polypharmacy and potential drug interactions in DM and FSHD

    The pharmacokinetics of nebulized nanocrystal budesonide suspension in healthy volunteers.

    Get PDF
    Nanocrystal budesonide (nanobudesonide) is a suspension for nebulization in patients with steroid-responsive pulmonary diseases such as asthma. The pharmacokinetics and safety of the product were compared to those of Pulmicort Respules. Sixteen healthy volunteers were administered nanobudesonide 0.5 and 1.0 mg, Pulmicort Respules 0.5 mg, and placebo in a four-way, randomized crossover design. All nebulized formulations were well tolerated, with no evidence of bronchospasm. Nebulization times were significantly shorter for nanobudesonide compared to Pulmicort Respules. Because of a low oral bioavailability, plasma concentration of budesonide is a good marker of lung-delivered dose. The pharmacokinetics of nanobudesonide 0.5 and 1.0 mg were approximately dose proportional with respect to Cmax, AUC(0-t), and AUC(0-infinity). Nanobudesonide 0.5 mg and Pulmicort Respules 0.5 mg exhibited similar AUCs, suggesting a similar extent of pulmonary absorption. A higher Cmax was noted with nanobudesonide 0.5 mg, and the tmax was significantly different, suggesting a more rapid rate of drug delivery of nanobudesonide 0.5 mg than Pulmicort Respules. In conclusion, nebulized nanobudesonide 0.5 mg was safe in healthy volunteers, with a similar extent of absorption as Pulmicort Respules
    corecore