53 research outputs found

    United States v. Martignon

    Get PDF

    United States v. Martignon

    Get PDF

    Autism Spectrum Disorder Among US Children (2002–2010): Socioeconomic, Racial, and Ethnic Disparities

    Get PDF
    Objectives. To describe the association between indicators of socioeconomic status (SES) and the prevalence of autism spectrum disorder (ASD) in the United States during the period 2002 to 2010, when overall ASD prevalence among children more than doubled, and to determine whether SES disparities account for ongoing racial and ethnic disparities in ASD prevalence

    The Vehicle, Spring 1998

    Get PDF
    Vol. 39, No. 2 Table of Contents The MarriageStephanie Kavanaughpage 10 UntitledKyla Anthonypage 11 Behind the Old Farmhouse FieldJacob Tolbertpage 12 decomposing tearsDavid Moutraypage 13 brookBrooke Tidballpage 14 Sacred CircleJacob Tolbertpage 15 without discretionMandy Watsonpage 16 HAIRCUTStephanie Kavanaughpage 17 Slave for a DayLizz Lampherepage 18 Taco HellEric Dolanpage 19 Who Am I?Sara Cizmarpage 20 XXJason Brownpage 21-22 Torn PaperJacob Tolbertpage 23-24 Fat GirlsKim Hunterpage 24 UntitledMaureen Rafterypage 25 LegosA. Fijakiewiczpage 26 Black Shoes in JuneErin Maagpage 27 UntitledMaureen Rafterypage 28 TicklishLizz Lampherepage 29 of naiveteMandy Watsonpage 30 The Geology of WaterfallsStephanie Kavanaughpage 31 GratitudeJeanette McCainpage 32 AnswersKim Hunterpage 33 Cornfield MeetDaniel G. Fitzgeraldpage 39https://thekeep.eiu.edu/vehicle/1071/thumbnail.jp

    Genome-wide binding of the orphan nuclear receptor TR4 suggests its general role in fundamental biological processes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The orphan nuclear receptor TR4 (human testicular receptor 4 or NR2C2) plays a pivotal role in a variety of biological and metabolic processes. With no known ligand and few known target genes, the mode of TR4 function was unclear.</p> <p>Results</p> <p>We report the first genome-wide identification and characterization of TR4 <it>in vivo </it>binding. Using chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq), we identified TR4 binding sites in 4 different human cell types and found that the majority of target genes were shared among different cells. TR4 target genes are involved in fundamental biological processes such as RNA metabolism and protein translation. In addition, we found that a subset of TR4 target genes exerts cell-type specific functions. Analysis of the TR4 binding sites revealed that less than 30% of the peaks from any of the cell types contained the DR1 motif previously derived from <it>in vitro </it>studies, suggesting that TR4 may be recruited to the genome via interaction with other proteins. A bioinformatics analysis of the TR4 binding sites predicted a <it>cis </it>regulatory module involving TR4 and ETS transcription factors. To test this prediction, we performed ChIP-seq for the ETS factor ELK4 and found that 30% of TR4 binding sites were also bound by ELK4. Motif analysis of the sites bound by both factors revealed a lack of the DR1 element, suggesting that TR4 binding at a subset of sites is facilitated through the ETS transcription factor ELK4. Further studies will be required to investigate the functional interdependence of these two factors.</p> <p>Conclusions</p> <p>Our data suggest that TR4 plays a pivotal role in fundamental biological processes across different cell types. In addition, the identification of cell type specific TR4 binding sites enables future studies of the pathways underlying TR4 action and its possible role in metabolic diseases.</p

    Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types.

    Get PDF
    UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. SIGNIFICANCE: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.The Breast Cancer Association Consortium (BCAC), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL), and the Ovarian Cancer Association Consortium (OCAC) that contributed breast, prostate, and ovarian cancer data analyzed in this study were in part funded by Cancer Research UK [C1287/A10118 and C1287/A12014 for BCAC; C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, and C16913/A6135 for PRACTICAL; and C490/A6187, C490/A10119, C490/A10124, C536/A13086, and C536/A6689 for OCAC]. Funding for the Collaborative Oncological Gene-environment Study (COGS) infrastructure came from: the European Community's Seventh Framework Programme under grant agreement number 223175 (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, and C8197/A16565), the US National Institutes of Health (CA128978) and the Post-Cancer GWAS Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative (1U19 CA148537, 1U19 CA148065, and 1U19 CA148112), the US Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund [with donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07)]. Additional financial support for contributing studies is documented under Supplementary Financial Support.This is the author accepted manuscript. The final version is available from the American Association for Cancer Research via http://dx.doi.org/10.1158/2159-8290.CD-15-122

    A autoridade, o desejo e a alquimia da política: linguagem e poder na constituição do papado medieval (1060-1120)

    Full text link

    United States v. Martignon

    No full text
    • …
    corecore