32 research outputs found

    Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy

    Get PDF
    Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance

    When simulated environments make the difference: the effectiveness of different types of training of car service procedures

    Get PDF
    An empirical analysis was performed to compare the effectiveness of different approaches to training a set of procedural skills to a sample of novice trainees. Sixty-five participants were randomly assigned to one of the following three training groups: (1) learning-by-doing in a 3D desktop virtual environment, (2) learning-by-observing a video (show-and-tell) explanation of the procedures, and (3) trial-and-error. In each group, participants were trained on two car service procedures. Participants were recalled to perform a procedure either 2 or 4 weeks after the training. The results showed that: (1) participants trained through the virtual approach of learning-by-doing performed both procedures significantly better (i.e. p < .05 in terms of errors and time) than people of non-virtual groups, (2) the virtual training group, after a period of non-use, were more effective than non-virtual training (i.e. p < .05) in their ability to recover their skills, (3) after a (simulated) long period from the training—i.e. up to 12 weeks—people who experienced 3D environments consistently performed better than people who received other kinds of training. The results also suggested that independently from the training group, trainees’ visuospatial abilities were a predictor of performance, at least for the complex service procedure, adj R2 = .460, and that post-training performances of people trained through virtual learning-by-doing are not affected by learning styles. Finally, a strong relationship (p < .001, R2 = .441) was identified between usability and trust in the use of the virtual training tool—i.e. the more the system was perceived as usable, the more it was perceived as trustable to acquire the competences

    Is implicit motor learning preserved after stroke? A systematic review with meta-analysis

    Get PDF
    © 2016 Kal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients' automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved poststroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts

    Effect of electrolytic lesion of the dorsal raphe nucleus on water intake and sodium appetite

    No full text
    The present study determined the effect of an electrolytic lesion of the dorsal raphe nucleus (DRN) on water intake and sodium appetite. Male Wistar rats weighing 290-320 g with a lesion of the DRN (L-DRN), performed two days before experiments and confirmed by histology at the end of the experiments, presented increased sensitivity to the dehydration induced by fluid deprivation. The cumulative water intake of L-DRN rats reached 23.3 ± 1.9 ml (a 79% increase, N = 9) while sham-lesioned rats (SL-DRN) did not exceed 13.0 ± 1.0 ml (N = 11, P < 0.0001) after 5 h. The L-DRN rats treated with isoproterenol (300 ”g kg-1 ml-1, sc) exhibited an increase in water intake that persisted throughout the experimental period (L-DRN, 15.7 ± 1.47 ml, N = 9 vs SL-DRN, 9.3 ± 1.8 ml, N = 11, P < 0.05). The L-DRN rats also showed an increased spontaneous sodium appetite during the entire period of assessment. The intake of 0.3 M NaCl after 12, 24, 36 and 72 h by the L-DRN rats was always higher than 20.2 ± 4.45 ml (N = 10), while the intake by SL-DRN was always lower than 2.45 ± 0.86 ml (N = 10, P < 0.00001). Sodium- and water-depleted L-DRN rats also exhibited an increased sodium appetite (13.9 ± 2.0 ml, N = 11) compared to SL-DRN (4.6 ± 0.64 ml, N = 11) after 120 min of observation (P < 0.02). The sodium preference of L-DRN rats in both conditions was always higher than that of SL-DRN rats. These results suggest that electrolytic lesion of the DRN overcomes a tonic inhibitory component of sodium appetite

    A model of contextual effect on reproduced extents in recall tasks: the issue of the imputed motion hypothesis

    No full text
    In this article the fundamental question of space and time dependencies in the reproduction of spatial or temporal extents is studied. The functional dependence of spatial responses on the temporal context and the corresponding dependence of temporal responses on spatial context are reported as the tau and kappa effects, respectively. A common explanation suggested that the participant imputes motion to discontinuous displays. Using a mathematical model we explore the imputed velocity hypothesis and provide a globally fit model that addresses the question of sequences modelling. Our model accounts for observed data in the tau experiment. The accuracy of the model is improved introducing a new hypothesis based on small velocity variations. On the other hand, results show that the imputed velocity hypothesis fails to reproduce the kappa effect. This result definitively shows that both effects are not symmetric.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore