618 research outputs found

    On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems

    Get PDF
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic properties from its associated labelled calculus

    Endurant Types in Ontology-Driven Conceptual Modeling: Towards OntoUML 2.0

    Get PDF
    For over a decade now, a community of researchers has contributed to the development of the Unified Foundational Ontology (UFO) - aimed at providing foundations for all major conceptual modeling constructs. This ontology has led to the development of an Ontology-Driven Conceptual Modeling language dubbed OntoUML, reflecting the ontological micro-theories comprising UFO. Over the years, UFO and OntoUML have been successfully employed in a number of academic, industrial and governmental settings to create conceptual models in a variety of different domains. These experiences have pointed out to opportunities of improvement not only to the language itself but also to its underlying theory. In this paper, we take the first step in that direction by revising the theory of types in UFO in response to empirical evidence. The new version of this theory shows that many of the meta-types present in OntoUML (differentiating Kinds, Roles, Phases, Mixins, etc.) should be considered not as restricted to Substantial types but instead should be applied to model Endurant Types in general, including Relator types, Quality types and Mode types. We also contribute a formal characterization of this fragment of the theory, which is then used to advance a metamodel for OntoUML 2.0. Finally, we propose a computational support tool implementing this updated metamodel

    HIV-1 Tat exacerbates lipopolysaccharide-induced cytokine release via TLR4 signaling in the enteric nervous system

    Get PDF
    The loss of gut epithelium integrity leads to translocation of microbes and microbial products resulting in immune activation and drives systemic inflammation in acquired immunodeficiency syndrome (AIDS) patients. Although viral loads in HIV patients are significantly reduced in the post-cART era, inflammation and immune activation persist and can lead to morbidity. Here, we determined the interactive effects of the viral protein HIV-1 Tat and lipopolysaccharide (LPS) on enteric neurons and glia. Bacterial translocation was significantly enhanced in Tat-expressing (Tat+) mice. Exposure to HIV-1 Tat in combination with LPS enhanced the expression and release of the pro-inflammatory cytokines IL-6, IL-1Ī² and TNF-Ī± in the ilea of Tat+ mice and by enteric glia. This coincided with enhanced NF-ĪŗB activation in enteric glia that was abrogated in glia from TLR4 knockout mice and by knockdown (siRNA) of MyD88 siRNA in wild type glia. The synergistic effects of Tat and LPS resulted in a reduced rate of colonic propulsion in Tat+ mice treated with LPS. These results show that HIV-1 Tat interacts with the TLR4 receptor to enhance the pro-inflammatory effects of LPS leading to gastrointestinal dysmotility and enhanced immune activation

    Gd disilicide nanowires attached to Si(111) steps

    Full text link
    Self-assembled electronic devices, such as quantum dots or switchable molecules, need self-assembled nanowires as connections. We explore the growth of conducting Gd disilicide nanowires at step arrays on Si(111). Atomically smooth wires with large aspect ratios are formed at low coverage and high growth rate (length >1 micron, width 10nm, height 0.6nm). They grow parallel to the steps in the [-1 1 0 ] direction, which is consistent with a lattice match of 0.8% with the a-axis of the hexagonal silicide, together with a large mismatch in all other directions. This mechanism is similar to that observed previously on Si(100). In contrast to Si(100), the wires are always attached to step edges on Si(111) and can thus be grown selectively on regular step arrays.Comment: 3 pages including 4 figure

    HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations

    Get PDF
    Memory deficits are characteristic of HIV-associated neurocognitive disorders (HAND) and co-occur with hippocampal pathology. The HIV-1 transactivator of transcription (Tat), a regulatory protein, plays a significant role in these events, but the cellular mechanisms involved are poorly understood. Within the hippocampus, diverse populations of interneurons form complex networks; even subtle disruptions can drastically alter synaptic output, resulting in behavioral dysfunction. We hypothesized that HIV-1 Tat would impair cognitive behavior and injure specific hippocampal interneuron subtypes. Male transgenic mice that inducibly expressed HIV-1 Tat (or non-expressing controls) were assessed for cognitive behavior or had hippocampal CA1 subregions evaluated via interneuron subpopulation markers. Tat exposure decreased spatial memory in a Barnes maze and mnemonic performance in a novel object recognition test. Tat reduced the percentage of neurons expressing neuronal nitric oxide synthase (nNOS) without neuropeptide Y immunoreactivity in the stratum pyramidale and the stratum radiatum, parvalbumin in the stratum pyramidale, and somatostatin in the stratum oriens, which are consistent with reductions in interneuron-specific interneuron type 3 (IS3), bistratified, and oriens-lacunosum-moleculare interneurons, respectively. The findings reveal that an interconnected ensemble of CA1 nNOS-expressing interneurons, the IS3 cells, as well as subpopulations of parvalbumin- and somatostatin-expressing interneurons are preferentially vulnerable to HIV-1 Tat. Importantly, the susceptible interneurons form a microcircuit thought to be involved in feedback inhibition of CA1 pyramidal cells and gating of CA1 pyramidal cell inputs. The identification of vulnerable CA1 hippocampal interneurons may provide novel insight into the basic mechanisms underlying key functional and neurobehavioral deficits associated with HAND

    Octahedral conversion of a-SiO2-host matrix by pulsed ion implantation

    Full text link
    This is the abstract. The results of measurements of X-ray photoelectron spectra (XPS) of a-SiO2-host material after pulsed implantation with [Mn+] and [Co+, Mn+]-ions as well as DFT-calculations are presented. The low-energy shift is found in XPS Si 2p and O 1s core-levels of single [Mn+] and dual [Co+, Mn+] pulsed ion-implanted a-SiO2 (E = 30 keV, D = 2*10^17 cm^-2) with respect to those of untreated a-SiO2.The similar changes are found in XPS Si 2p and O 1s of stishovite compared to those of quartz. This means that the pulsed ion-implantation induces the local high pressure effect which leads to an appearance of SiO6-structural units in alpha-SiO2 host, forming "stishovite-like" local atomic structure. This process can be described within electronic bonding transition from the four-fold "quartz-like" to six-fold "stishovite-like" high-pressure phase in SiO2 host-matrix. It is found that such octahedral conversion depends on the fluence and starts with doses higher than D = 3*10^16 cm^-2.Comment: 15 pages, 6 figures, 1 table, accepted in phys. stat. solidi (b
    • ā€¦
    corecore