627 research outputs found

    Retaining Black Holes with Very Large Recoil Velocities

    Full text link
    Recent numerical simulations of binary black hole mergers show the possibility of producing very large recoil velocities (> 3000 km/s). Kicks of this magnitude should be sufficient to eject the final black hole from virtually any galactic potential. This result has been seen as a potential contradiction with observations of supermassive black holes residing in the centers of most galaxies in the local universe. Using an extremely simplified merger tree model, we show that, even in the limit of very large ejection probability, after a small number of merger generations there should still be an appreciable fraction (>50%) of galaxies with supermassive black holes today. We go on to argue that the inclusion of more realistic physics ingredients in the merger model should systematically increase this retention fraction, helping to resolve a potential conflict between theory and observation. Lastly, we develop a more realistic Monte Carlo model to confirm the qualitative arguments and estimate occupation fractions as a function of the central galactic velocity dispersion.Comment: 6 pages, 3 figures; Comments welcom

    Binary Black Holes: Spin Dynamics and Gravitational Recoil

    Full text link
    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are anti-aligned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with anti-aligned spins to fit the parameters in the \KKF{,} and verify that the recoil along the direction of the orbital angular momentum is sinθ\propto \sin\theta and on the orbital plane cosθ\propto \cos\theta, with θ\theta the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius.Comment: 15 pages, 10 figures, replaced with version accepted for publication in PR

    Gravitational recoil from spinning binary black hole mergers

    Get PDF
    The inspiral and merger of binary black holes will likely involve black holes with both unequal masses and arbitrary spins. The gravitational radiation emitted by these binaries will carry angular as well as linear momentum. A net flux of emitted linear momentum implies that the black hole produced by the merger will experience a recoil or kick. Previous studies have focused on the recoil velocity from unequal mass, non-spinning binaries. We present results from simulations of equal mass but spinning black hole binaries and show how a significant gravitational recoil can also be obtained in these situations. We consider the case of black holes with opposite spins of magnitude aa aligned/anti-aligned with the orbital angular momentum, with aa the dimensionless spin parameters of the individual holes. For the initial setups under consideration, we find a recoil velocity of V = 475 \KMS a. Supermassive black hole mergers producing kicks of this magnitude could result in the ejection from the cores of dwarf galaxies of the final hole produced by the collision.Comment: 8 pages, 8 figures, replaced with version accepted for publication in Ap

    Gravitational wave recoil in Robinson-Trautman spacetimes

    Full text link
    We consider the gravitational recoil due to non-reflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black-hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black-hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have been appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the non-linear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the non-axisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.Comment: 9 pages, 6 figures, final version to appear in PR

    The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation

    Get PDF
    We assess models for the assembly of supermassive black holes (SMBHs) at the center of galaxies that trace their hierarchical build-up far up in the dark halo `merger tree'. We assume that the first `seed' black holes (BHs) formed in (mini)halos collapsing at z=20 from high-sigma density fluctuations. As these pregalactic holes become incorporated through a series of mergers into larger and larger halos, they sink to the center owing to dynamical friction, accrete a fraction of the gas in the merger remnant to become supermassive, form a binary system, and eventually coalesce. The merger history of dark matter halos and associated BHs is followed by cosmological Monte Carlo realizations of the merger hierarchy. A simple model, where quasar activity is driven by major mergers and SMBHs accrete at the Eddington rate a mass that scales with the fifth power of the velocity dispersion, is shown to reproduce the optical LF of quasars in the redshift range 1<z<4. Binary and triple BH interactions are followed in our merger tree. The assumptions underlying our scenario lead to the prediction of a population of massive BHs wandering in galaxy halos and the intergalactic medium at the present epoch, and contributing <10% to the total BH mass density. At all epochs the fraction of binary SMBHs in galaxy nuclei is of order 10%, while the fraction of binary quasars is less than 0.3%Comment: revised version, accepted for publication in the ApJ, emulateapj, 15 pages, 16 figure

    Recoiling from a kick in the head-on collision of spinning black holes

    Full text link
    Recoil ``kicks'' induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin and then adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant relative to unequal-mass recoils even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian theory, even though the kick is generated in the nonlinear merger interaction, where post-Newtonian theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.Comment: 12 pages, 10 figures. Replaced with published version, including more discussion of convergence and properties of final hol

    Four-Body Effects in Globular Cluster Black Hole Coalescence

    Get PDF
    In the high density cores of globular clusters, multibody interactions are expected to be common, with the result that black holes in binaries are hardened by interactions. It was shown by Sigurdsson & Hernquist (1993) and others that 10 solar mass black holes interacting exclusively by three-body encounters do not merge in the clusters themselves, because recoil kicks the binaries out of the clusters before the binaries are tight enough to merge. Here we consider a new mechanism, involving four-body encounters. Numerical simulations by a number of authors suggest that roughly 20-50% of binary-binary encounters will eject one star but leave behind a stable hierarchical triple. If the orbital plane of the inner binary is strongly tilted with respect to the orbital plane of the outer object, a secular Kozai resonance, first investigated in the context of asteroids in the Solar System, can increase the eccentricity of the inner body significantly. We show that in a substantial fraction of cases the eccentricity is driven to a high enough value that the inner binary will merge by gravitational radiation, without a strong accompanying kick. Thus the merged object remains in the cluster; depending on the binary fraction of black holes and the inclination distribution of newly-formed hierarchical triples, this mechanism may allow massive black holes to accumulate through successive mergers in the cores of globular clusters. It may also increase the likelihood that stellar-mass black holes in globular clusters will be detectable by their gravitational radiation.Comment: Submitted to ApJ Letters (includes emulateapj.sty

    Probing the presence of a single or binary black hole in the globular cluster NGC 6752 with pulsar dynamics

    Full text link
    The five millisecond pulsars that inhabit NGC 6752 display locations or accelerations that are quite unusual compared to all other pulsars known in globular clusters. In particular PSR-A, a binary pulsar, lives in the cluster halo, while PSR-B and PSR-E, located in the core, show remarkably high negative spin derivatives. This is suggestive that some uncommon dynamical process is at play in the cluster core that we attribute to the presence of a massive perturber. We here investigate whether a single intermediate-mass black hole, lying on the extrapolation of the Mass versus Sigma relation observed in galaxy spheroids, or a less massive binary consisting of two black holes could play the requested role. To this purpose we simulated binary-binary encounters involving PSR-A, its companion star, and the black hole(s). Various scenarios are discussed in detail. In our close 4-body encounters, a black hole-black hole binary may attract on a long-term stable orbit a millisecond pulsar. Timing measurements on the captured satellite-pulsar, member of a hierarchical triplet, could unambiguously unveil the presence of a black hole(s) in the core of a globular cluster.Comment: 13 pages, 8 figures, Accepted for publication in The Astrophysical Journa

    The Infrared Afterglow of Supermassive Black Hole Mergers

    Full text link
    We model the spectra and light curves of circumbinary accretion disks during the time after the central black holes merge. The most immediate effect of this merger is the dissipation of energy in the outer regions of the disk due to the gravitational wave energy and linear momentum flux released at merger. This has the effect of perturbing the gas in the disk, which then radiates the dissipated energy over a cooling timescale, giving a characteristic infrared signal for tens of thousands of years when the total black hole mass is M~10^8 M_sun. On the basis of a simple cosmological merger model in which a typical supermassive black hole undergoes a few major mergers during its lifetime, we predict that ~10^4-10^5 of these IR sources should be observable today and discuss the possibility of identifying them with multi-wavelength surveys such as SWIRE/XMM-LSS/XBootes and COSMOS.Comment: v2: expanded discussion of optical depth calculations; ApJ in pres

    Investing in emerging infectious diseases: a systematic analysis of UK research

    Get PDF
    Background: Emerging and infectious diseases threaten health, security, and the global economy. However, little is known about investments in research to tackle outbreaks and innovate new tools for infectious disease control.Methods &amp; Materials: We systematically searched databases and websites for information on research investments for the period 1997-2010. We identified 325,922 studies for screening, included 6,165 studies in the initial analysis, and identified 654 studies on emerging infectious diseases in the final analysis.Results: We identified a total research investment in emerging infectious diseases of £199 million, accounting for 7.7% of a total research investment in infectious diseases of £2.6 billion. In comparison, investment in HIV research amounted to £478 million (18.4% of total investment).Diagnostic tools for control accounted for £9.8 million (4.9%) across 66 studies. Studies assessing therapeutics accounted for £20.0 million (9.9%) across 35 studies. Vaccine research attracted the least funding for tools to tackle emerging infectious diseases, with £11.5 million (5.8%) across 24 studies.Hepatitis C received the most investment with £59.7 million (30.0%), followed by prion research with £33.5 million (16.8%), Campylobacter jejuni with £24.1 million (12.1%), and Helicobacter pylori with £15.1 million (7.6%). Although total influenza investment was £80.1 million, funding specifically for H5N1 influenza virus was £13.7 million (6.9%) and for H1N1 influenza virus was £10.8 million (5.4%).Public funding accounted for £144.0 million (72.3%) across 361 studies with philanthropic funding awarding £40.6 million (20.4%) across 173. Preclinical research attracted the most investment with £142.4 million (71.5%) followed by epidemiological and operational research with £42.1 million (21.2%) and product development research with £12.2 million (6.1%). Phase 1, 2, 3 clinical trials was the least well-funded type of research with £2.5 million (1.2%).Conclusion: Emerging infectious diseases receives small amounts of funding compared to other scientific disciplines, with the exception of HIV. It is essential that we map, monitor and evaluate emerging infectious disease research funding given their importance to global health security
    corecore