135 research outputs found

    Influencing a Swift Trust for Elevating Communications of a Virtual Learning Community

    Get PDF
    The reduced range of online communication means that less information is available for the parties in a communication to acquire an accurate meaning of words, phrases, or concepts in an exchange process. In online communication, encoded emotional information is often subtle and difficult to interpret with any degree of accuracy; this interpretation is even more difficult in academic discussions that are lacking in emotion. The resulting misunderstandings contribute to a degree of uncertainty and confusion with some students, and to full-blown conflict with others. Uncertainty is problematic because it can inhibit or altogether collapse a conventional trust perception. The most valuable communications, therefore, develop on a foundation of trust. This study was designed to explore swift trust, a lesser form of trust that can form instantly from the initial communications expressed in a community. A swift trust perception can bridge social development and allow communicants to ignore the communication and environmental challenges that impede a conventional form of trust from developing for virtual communities. This quantitative study utilized multiple regression analysis to predict relationships between the predictive variables and examine the criterion variables in focus. The multiple regression analysis was used to interpret the survey data and provide insight into the trust-inducing potential of a fragile swift trust perception for elevating online discussions to a higher level

    Evolutionary History and Attenuation of Myxoma Virus on Two Continents

    Get PDF
    The attenuation of myxoma virus (MYXV) following its introduction as a biological control into the European rabbit populations of Australia and Europe is the canonical study of the evolution of virulence. However, the evolutionary genetics of this profound change in host-pathogen relationship is unknown. We describe the genome-scale evolution of MYXV covering a range of virulence grades sampled over 49 years from the parallel Australian and European epidemics, including the high-virulence progenitor strains released in the early 1950s. MYXV evolved rapidly over the sampling period, exhibiting one of the highest nucleotide substitution rates ever reported for a double-stranded DNA virus, and indicative of a relatively high mutation rate and/or a continually changing selective environment. Our comparative sequence data reveal that changes in virulence involved multiple genes, likely losses of gene function due to insertion-deletion events, and no mutations common to specific virulence grades. Hence, despite the similarity in selection pressures there are multiple genetic routes to attain either highly virulent or attenuated phenotypes in MYXV, resulting in convergence for phenotype but not genotype. © 2012 Kerr et al

    Comparative analysis of the complete genome sequence of the California MSW strain of myxoma virus reveals potential host adaptations

    No full text
    Myxomatosis is a rapidly lethal disease of European rabbits that is caused by myxoma virus (MYXV). The introduction of a South American strain of MYXV into the European rabbit population of Australia is the classic case of host-pathogen coevolution following cross-species transmission. The most virulent strains of MYXV for European rabbits are the Californian viruses, found in the Pacific states of the United States and the Baja Peninsula, Mexico. The natural host of Californian MYXV is the brush rabbit, Sylvilagus bachmani. We determined the complete sequence of the MSW strain of Californian MYXV and performed a comparative analysis with other MYXV genomes. The MSW genome is larger than that of the South American Lausanne (type) strain of MYXV due to an expansion of the terminal inverted repeats (TIRs) of the genome, with duplication of the M156R, M154L, M153R, M152R, and M151R genes and part of the M150R gene from the right-hand (RH) end of the genome at the left-hand (LH) TIR. Despite the extreme virulence of MSW, no novel genes were identified; five genes were disrupted by multiple indels or mutations to the ATG start codon, including two genes, M008.1L/R and M152R, with major virulence functions in European rabbits, and a sixth gene, M000.5L/R, was absent. The loss of these gene functions suggests that S. bachmani is a relatively recent host for MYXV and that duplication of virulence genes in the TIRs, gene loss, or sequence variation in other genes can compensate for the loss of M008.1L/R and M152R in infections of European rabbits.This work was funded in part by grant R01 AI093804 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health. E.C.H. was supported by an NHMRC Australia Fellowship, and D.C.T. was supported by an ARC Future Fellowship

    Genome scale evolution of myxoma virus reveals host-pathogen adaptation and rapid geographic spread

    No full text
    The evolutionary interplay between myxoma virus (MYXV) and the European rabbit (Oryctolagus cuniculus) following release of the virus in Australia in 1950 as a biological control is a classic example of host-pathogen coevolution. We present a detailed genomic and phylogeographic analysis of 30 strains of MYXV, including the Australian progenitor strain Standard Laboratory Strain (SLS), 24 Australian viruses isolated from 1951 to 1999, and three isolates from the early radiation in Britain from 1954 and 1955. We show that in Australia MYXV has spread rapidly on a spatial scale, with multiple lineages cocirculating within individual localities, and that both highly virulent and attenuated viruses were still present in the field through the 1990s. In addition, the detection of closely related virus lineages at sites 1,000 km apart suggests that MYXV moves freely in geographic space, with mosquitoes, fleas, and rabbit migration all providing means of transport. Strikingly, despite multiple introductions, all modern viruses appear to be ultimately derived from the original introductions of SLS. The rapidity of MYXV evolution was also apparent at the genomic scale, with gene duplications documented in a number of viruses. Duplication of potential virulence genes may be important in increasing the expression of virulence proteins and provides the basis for the evolution of novel functions. Mutations leading to loss of open reading frames were surprisingly frequent and in some cases may explain attenuation, but no common mutations that correlated with virulence or attenuation were identified.This work was funded in part by grant R01 AI093804 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health. E.C.H. is funded by an NHMRC Australia Fellowship. D.C.T. is funded by an ARC Future Fellowship

    Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations

    Get PDF
    The potential to capture additional air pollutants by introducing more vegetation or changing existing short vegetation to woodland on first sight provides an attractive route for lowering urban pollution. Here, an atmospheric chemistry and transport model was run with a range of landcover scenarios to quantify pollutant removal by the existing total UK vegetation as well as the UK urban vegetation and to quantify the effect of large-scale urban tree planting on urban air pollution. UK vegetation as a whole reduces area (population)-weighted concentrations significantly, by 10% (9%) for PM2.5, 30% (22%) for SO2, 24% (19%) for NH3 and 15% (13%) for O3, compared with a desert scenario. By contrast, urban vegetation reduces average urban PM2.5 by only approximately 1%. Even large-scale conversion of half of existing open urban greenspace to forest would lower urban PM2.5 by only another 1%, suggesting that the effect on air quality needs to be considered in the context of the wider benefits of urban tree planting, e.g. on physical and mental health. The net benefits of UK vegetation for NO2 are small, and urban tree planting is even forecast to increase urban NO2 and NOx concentrations, due to the chemical interaction with changes in BVOC emissions and O3, but the details depend on tree species selection. By extrapolation, green infrastructure projects focusing on non-greenspace (roadside trees, green walls, roof-top gardens) would have to be implemented at very large scales to match this effect. Downscaling of the results to micro-interventions solely aimed at pollutant removal suggests that their impact is too limited for their cost–benefit analysis to compare favourably with emission abatement measures. Urban vegetation planting is less effective for lowering pollution than measures to reduce emissions at source. The results highlight interactions that cannot be captured if benefits are quantified via deposition models using prescribed concentrations, and emission damage costs

    Stochastic Processes Are Key Determinants of Short-Term Evolution in Influenza A Virus

    Get PDF
    Understanding the evolutionary dynamics of influenza A virus is central to its surveillance and control. While immune-driven antigenic drift is a key determinant of viral evolution across epidemic seasons, the evolutionary processes shaping influenza virus diversity within seasons are less clear. Here we show with a phylogenetic analysis of 413 complete genomes of human H3N2 influenza A viruses collected between 1997 and 2005 from New York State, United States, that genetic diversity is both abundant and largely generated through the seasonal importation of multiple divergent clades of the same subtype. These clades cocirculated within New York State, allowing frequent reassortment and generating genome-wide diversity. However, relatively low levels of positive selection and genetic diversity were observed at amino acid sites considered important in antigenic drift. These results indicate that adaptive evolution occurs only sporadically in influenza A virus; rather, the stochastic processes of viral migration and clade reassortment play a vital role in shaping short-term evolutionary dynamics. Thus, predicting future patterns of influenza virus evolution for vaccine strain selection is inherently complex and requires intensive surveillance, whole-genome sequencing, and phenotypic analysis

    PrimerHunter: a primer design tool for PCR-based virus subtype identification

    Get PDF
    Rapid and reliable virus subtype identification is critical for accurate diagnosis of human infections, effective response to epidemic outbreaks and global-scale surveillance of highly pathogenic viral subtypes such as avian influenza H5N1. The polymerase chain reaction (PCR) has become the method of choice for virus subtype identification. However, designing subtype-specific PCR primer pairs is a very challenging task: on one hand, selected primer pairs must result in robust amplification in the presence of a significant degree of sequence heterogeneity within subtypes, on the other, they must discriminate between the subtype of interest and closely related subtypes. In this article, we present a new tool, called PrimerHunter, that can be used to select highly sensitive and specific primers for virus subtyping. Our tool takes as input sets of both target and nontarget sequences. Primers are selected such that they efficiently amplify any one of the target sequences, and none of the nontarget sequences. PrimerHunter ensures the desired amplification properties by using accurate estimates of melting temperature with mismatches, computed based on the nearest neighbor model via an efficient fractional programming algorithm. Validation experiments with three avian influenza HA subtypes confirm that primers selected by PrimerHunter have high sensitivity and specificity for target sequences

    PrimerHunter: a primer design tool for PCR-based virus subtype identification

    Get PDF
    Rapid and reliable virus subtype identification is critical for accurate diagnosis of human infections, effective response to epidemic outbreaks and global-scale surveillance of highly pathogenic viral subtypes such as avian influenza H5N1. The polymerase chain reaction (PCR) has become the method of choice for virus subtype identification. However, designing subtype-specific PCR primer pairs is a very challenging task: on one hand, selected primer pairs must result in robust amplification in the presence of a significant degree of sequence heterogeneity within subtypes, on the other, they must discriminate between the subtype of interest and closely related subtypes. In this article, we present a new tool, called PrimerHunter, that can be used to select highly sensitive and specific primers for virus subtyping. Our tool takes as input sets of both target and nontarget sequences. Primers are selected such that they efficiently amplify any one of the target sequences, and none of the nontarget sequences. PrimerHunter ensures the desired amplification properties by using accurate estimates of melting temperature with mismatches, computed based on the nearest neighbor model via an efficient fractional programming algorithm. Validation experiments with three avian influenza HA subtypes confirm that primers selected by PrimerHunter have high sensitivity and specificity for target sequences

    Urban natural capital accounts: developing a novel approach to quantify air pollution removal by vegetation

    Get PDF
    Air pollution presents a major risk to human health, resulting in premature deaths and reduced quality of life. Quantifying the role of vegetation in reducing air pollution concentrations is an important contribution to urban natural capital accounting. However, most current methods to calculate pollution removal are static, and do not represent atmospheric transport of pollutants, or interactions among pollutants and meteorology. An additional challenge is defining urban extent in a way that captures the green and blue infrastructure providing the service in a consistent way. We developed a refined urban morphology layer which incorporates urban green and blue space. We then applied an atmospheric chemistry transport model (EMEP4UK) to calculate pollutant removal by urban natural capital for pollutants including PM2.5, NO2, SO2, O3. We calculated health benefits directly from the change in pollutant concentrations (i.e. exposure) rather than from tonnes of pollutant removed. Urban natural capital across Britain removes 28,700 tonnes of PM2.5, NO2, SO2, O3. The economic value of the health benefits are substantial: £136 million in 2015, resulting from 900 fewer respiratory hospital admissions, 220 fewer cardiovascular hospital admissions, 240 fewer deaths and 3600 fewer Life Years Lost

    Whole-Genome Analysis of Human Influenza A Virus Reveals Multiple Persistent Lineages and Reassortment among Recent H3N2 Viruses

    Get PDF
    Understanding the evolution of influenza A viruses in humans is important for surveillance and vaccine strain selection. We performed a phylogenetic analysis of 156 complete genomes of human H3N2 influenza A viruses collected between 1999 and 2004 from New York State, United States, and observed multiple co-circulating clades with different population frequencies. Strikingly, phylogenies inferred for individual gene segments revealed that multiple reassortment events had occurred among these clades, such that one clade of H3N2 viruses present at least since 2000 had provided the hemagglutinin gene for all those H3N2 viruses sampled after the 2002–2003 influenza season. This reassortment event was the likely progenitor of the antigenically variant influenza strains that caused the A/Fujian/411/2002-like epidemic of the 2003–2004 influenza season. However, despite sharing the same hemagglutinin, these phylogenetically distinct lineages of viruses continue to co-circulate in the same population. These data, derived from the first large-scale analysis of H3N2 viruses, convincingly demonstrate that multiple lineages can co-circulate, persist, and reassort in epidemiologically significant ways, and underscore the importance of genomic analyses for future influenza surveillance
    corecore