5,351 research outputs found

    Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x = 0.001) skutterudite

    Get PDF
    We report electron spin resonance (ESR) measurements in the Gd3+ doped semiconducting filled skutterudite compound Ce1-xGdxFe4P12 (x = 0.001). As the temperature T varies from T = 150 K to T = 165 K, the Gd3+ ESR fine and hyperfine structures coalesce into a broad inhomogeneous single resonance. At T = 200 K the line narrows and as T increases further, the resonance becomes homogeneous with a thermal broadening of 1.1(2) Oe/K. These results suggest that the origin of these features may be associated to a subtle interdependence of thermally activated mechanisms that combine: i) an increase with T of the density of activated conduction-carriers across the T-dependent semiconducting pseudogap; ii) the Gd3+ Korringa relaxation process due to an exchange interaction, J_{fd}S.s, between the Gd3+ localized magnetic moments and the thermally activated conduction-carriers and; iii) a relatively weak confining potential of the rare-earth ions inside the oversized (Fe2P3)4 cage, which allows the rare-earths to become rattler Einstein oscillators above T = 148 K. We argue that the rattling of the Gd3+ ions, via a motional narrowing mechanism, also contributes to the coalescence of the ESR fine and hyperfine structure.Comment: 7 pages, 9 figures, accepted for publication in Phys Rev

    Site specific spin dynamics in BaFe2As2: tuning the ground state by orbital differentiation

    Get PDF
    The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2_{2}As2_{2} single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3dd bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content interestingly occurs independently on the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations combined with the resultant particular symmetry of the Fe 3dd bands are propitious ingredients to the emergence of superconductivity in this class of materials.Comment: 6 pages, 5 figure

    Unconventional Metallic Magnetism in LaCrSb{3}

    Get PDF
    Neutron-diffraction measurements in LaCrSb{3} show a coexistence of ferromagnetic and antiferromagnetic sublattices below Tc=126 K, with ordered moments of 1.65(4) and 0.49(4) Bohr magnetons per formula unit, respectively (T=10 K), and a spin reorientation transition at ~95 K. No clear peak or step was observed in the specific heat at Tc. Coexisting localized and itinerant spins are suggested.Comment: PRL, in pres

    Dependence of nuclear magnetic moments on quark masses and limits on temporal variation of fundamental constants from atomic clock experiments

    Full text link
    We calculate the dependence of the nuclear magnetic moments on the quark masses including the spin-spin interaction effects and obtain limits on the variation of the fine structure constant α\alpha and (mq/ΛQCD)(m_q/\Lambda_{QCD}) using recent atomic clock experiments examining hyperfine transitions in H, Rb, Cs, Yb+^+ and Hg+^+ and the optical transition in H, Hg+^+ and Yb+^+

    Spectroscopic Evidence for Multiple Order Parameter Components in the Heavy Fermion Superconductor CeCoIn_5

    Full text link
    Point-contact spectroscopy was performed on single crystals of the heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed measurement technique ensured minimal Joule heating over a wide voltage range. The spectra show Andreev-reflection characteristics with multiple structures which depend on junction impedance. Spectral analysis using the generalized Blonder-Tinkham-Klapwijk formalism for d-wave pairing revealed two coexisting order parameter components, with amplitudes Delta_1 = 0.95 +/- 0.15 meV and Delta_2 = 2.4 +/- 0.3 meV, which evolve differently with temperature. Our observations indicate a highly unconventional pairing mechanism, possibly involving multiple bands.Comment: 4 pages, 3 figure
    • …
    corecore