5,768 research outputs found

    Muon ID- Taking Care of Lower Momenta Muons

    Get PDF
    In the Muon package under study, the tracks are extrapolated using an algorithm which accounts for the magnetic field and the ionization (dE/dx). We improved the calculation of the field dependent term to increase the muon detection efficiency at lower momenta using a Runge-Kutta method. The muon identification and hadron separation in b-bbar jets is reported with the improved software. In the same framework, the utilization of the Kalman filter is introduced. The principle of the Kalman filter is described in some detail with the propagation matrix, with the Runge-Kutta term included, and the effect on low momenta single muons particles is described.Comment: PDF,5pages,2 Figures,1 Table,Presented at the 2005 International Linear Collider Physics and Detectors Workshop,Snowmass,Colorado,14-27 Aug. 2005, PSN1011 in the proceedin

    Anisotropy in magnetic and transport properties of Fe1-xCoxSb2

    Full text link
    Anisotropic magnetic and electronic transport measurements were carried out on large single crystals of Fe1-xCoxSb2 (0<= x <=1). The semiconducting state of FeSb2 evolves into metallic and weakly ferromagnetic by substitution of Fe with Co for x<0.5. Further doping induces structural transformation from orthorhombic Pnnm structure of FeSb2 to monoclinic P21/c structure of CoSb2 where semiconducting and diamagnetic ground state is restored again. Large magnetoresistance and anisotropy in electronic transport were observed.Comment: 7 pages, 6 figure

    Magnetic, thermal and transport properties of Cd doped CeIn3_3

    Full text link
    We have investigated the effect of Cd substitution on the archetypal heavy fermion antiferromagnet CeIn3_3 via magnetic susceptibility, specific heat and resistivity measurements. The suppression of the Neel temperature, TN_{N}, with Cd doping is more pronounced than with Sn. Nevertheless, a doping induced quantum critical point does not appear to be achievable in this system. The magnetic entropy at TNT_N and the temperature of the maximum in resistivity are also systematically suppressed with Cd, while the effective moment and the Curie-Weiss temperature in the paramagnetic state are not affected. These results suggest that Cd locally disrupts the AFM order on its neighboring Ce moments, without affecting the valence of Ce. Moreover, the temperature dependence of the specific heat below TNT_N is not consistent with 3D magnons in pure as well as in Cd-doped CeIn3_3, a point that has been missed in previous investigations of CeIn3_3 and that has bearing on the type of quantum criticality in this system

    Muon ID at the ILC

    Get PDF
    This paper describes a new way to reconstruct and identify muons with high efficiency and high pion rejection. Since muons at the ILC are often produced with or in jets, for many of the physics channels of interest[1], an efficient algorithm to deal with the identification and separation of particles within jets is important. The algorithm at the core of the method accounts for the effects of the magnetic field and for the loss of energy by charged particles due to ionization in the detector. We have chosen to develop the analysis within the setup of one of the Linear Collider Concept Detectors adopted by the US. Within b-pair production jets, particles cover a wide range in momenta; however ~ 80% of the particles have a momentum below 30 GeV[2]. Our study, focused on bbar-b jets, is preceded by a careful analysis of single energy particles between 2 and 50 GeV. As medium energy particles are a substantial component of the jets, many of the particles lose part of their energy in the calorimeters and the solenoid coil before reaching the muon detector where they may have energy below 2 GeV. To deal with this problem we have implemented a Runge-Kutta correction of the calculated trajectory to better handle these lower energy particles. The multiple scattering and other stochastic processes, more important at lower energy, is addressed by a Kalman-filter integrated into the reconstruction algorithm. The algorithm provides a unique and powerful separation of muons from pions. The 5 Tesla magnetic field from a solenoid surrounds the hadron calorimeter and allows the reconstruction and precision momentum measurement down to a few GeV

    Crystal structure and physical properties of EuPtIn4_{4} intermetallic antiferromagnet

    Full text link
    We report the synthesis of EuPtIn4_{4} single crystalline platelets by the In-flux technique. This compound crystallizes in the orthorhombic Cmcm structure with lattice parameters a=4.542(1)a=4.542(1) \AA, b=16.955(2)b=16.955(2) \AA \, and c=7.389(1)c=7.389(1) \AA. Measurements of magnetic susceptibility, heat capacity, electrical resistivity, and electron spin resonance (ESR) reveal that EuPtIn4_{4} is a metallic Curie-Weiss paramagnet at high temperatures and presents antiferromagnetic (AFM) ordering below TN=13.3T_{N}=13.3 K. In addition, we observe a successive anomaly at T∗=12.6T^{*} = 12.6 K and a spin-flop transition at Hc∼2.5H_{c} \sim 2.5 T applied along the acac-plane. In the paramagnetic state, a single Eu2+^{2+} Dysonian ESR line with a Korringa relaxation rate of b=4.1(2)b = 4.1(2) Oe/K is observed. Interestingly, even at high temperatures, both ESR linewidth and electrical resistivity reveal a similar anisotropy. We discuss a possible common microscopic origin for the observed anisotropy in these physical quantities likely associated with an anisotropic magnetic interaction between Eu2+^{2+} 4ff electrons mediated by conduction electrons.Comment: 5 pages, 5 figure

    Superconductivity without Fe or Ni in the phosphides BaIr2P2 and BaRh2P2

    Full text link
    Heat capacity, resistivity, and magnetic susceptibility measurements confirm bulk superconductivity in single crystals of BaIr2_2P2_2 (Tc_c=2.1K) and BaRh2_2P2_2 (Tc_c = 1.0 K). These compounds form in the ThCr2_2Si2_2 (122) structure so they are isostructural to both the Ni and Fe pnictides but not isoelectronic to either of them. This illustrates the importance of structure for the occurrence of superconductivity in the 122 pnictides. Additionally, a comparison between these and other ternary phosphide superconductors suggests that the lack of interlayer P−PP-P bonding favors superconductivity. These stoichiometric and ambient pressure superconductors offer an ideal playground to investigate the role of structure for the mechanism of superconductivity in the absence of magnetism.Comment: Published in Phys Rev B: Rapid Communication
    • …
    corecore