5,768 research outputs found
Muon ID- Taking Care of Lower Momenta Muons
In the Muon package under study, the tracks are extrapolated using an
algorithm which accounts for the magnetic field and the ionization (dE/dx). We
improved the calculation of the field dependent term to increase the muon
detection efficiency at lower momenta using a Runge-Kutta method. The muon
identification and hadron separation in b-bbar jets is reported with the
improved software. In the same framework, the utilization of the Kalman filter
is introduced. The principle of the Kalman filter is described in some detail
with the propagation matrix, with the Runge-Kutta term included, and the effect
on low momenta single muons particles is described.Comment: PDF,5pages,2 Figures,1 Table,Presented at the 2005 International
Linear Collider Physics and Detectors Workshop,Snowmass,Colorado,14-27 Aug.
2005, PSN1011 in the proceedin
Anisotropy in magnetic and transport properties of Fe1-xCoxSb2
Anisotropic magnetic and electronic transport measurements were carried out
on large single crystals of Fe1-xCoxSb2 (0<= x <=1). The semiconducting state
of FeSb2 evolves into metallic and weakly ferromagnetic by substitution of Fe
with Co for x<0.5. Further doping induces structural transformation from
orthorhombic Pnnm structure of FeSb2 to monoclinic P21/c structure of CoSb2
where semiconducting and diamagnetic ground state is restored again. Large
magnetoresistance and anisotropy in electronic transport were observed.Comment: 7 pages, 6 figure
Magnetic, thermal and transport properties of Cd doped CeIn
We have investigated the effect of Cd substitution on the archetypal heavy
fermion antiferromagnet CeIn via magnetic susceptibility, specific heat and
resistivity measurements. The suppression of the Neel temperature, T,
with Cd doping is more pronounced than with Sn. Nevertheless, a doping induced
quantum critical point does not appear to be achievable in this system. The
magnetic entropy at and the temperature of the maximum in resistivity are
also systematically suppressed with Cd, while the effective moment and the
Curie-Weiss temperature in the paramagnetic state are not affected. These
results suggest that Cd locally disrupts the AFM order on its neighboring Ce
moments, without affecting the valence of Ce. Moreover, the temperature
dependence of the specific heat below is not consistent with 3D magnons
in pure as well as in Cd-doped CeIn, a point that has been missed in
previous investigations of CeIn and that has bearing on the type of quantum
criticality in this system
Muon ID at the ILC
This paper describes a new way to reconstruct and identify muons with high efficiency and high pion rejection. Since muons at the ILC are often produced with or in jets, for many of the physics channels of interest[1], an efficient algorithm to deal with the identification and separation of particles within jets is important. The algorithm at the core of the method accounts for the effects of the magnetic field and for the loss of energy by charged particles due to ionization in the detector. We have chosen to develop the analysis within the setup of one of the Linear Collider Concept Detectors adopted by the US. Within b-pair production jets, particles cover a wide range in momenta; however ~ 80% of the particles have a momentum below 30 GeV[2]. Our study, focused on bbar-b jets, is preceded by a careful analysis of single energy particles between 2 and 50 GeV. As medium energy particles are a substantial component of the jets, many of the particles lose part of their energy in the calorimeters and the solenoid coil before reaching the muon detector where they may have energy below 2 GeV. To deal with this problem we have implemented a Runge-Kutta correction of the calculated trajectory to better handle these lower energy particles. The multiple scattering and other stochastic processes, more important at lower energy, is addressed by a Kalman-filter integrated into the reconstruction algorithm. The algorithm provides a unique and powerful separation of muons from pions. The 5 Tesla magnetic field from a solenoid surrounds the hadron calorimeter and allows the reconstruction and precision momentum measurement down to a few GeV
Crystal structure and physical properties of EuPtIn intermetallic antiferromagnet
We report the synthesis of EuPtIn single crystalline platelets by the
In-flux technique. This compound crystallizes in the orthorhombic Cmcm
structure with lattice parameters \AA, \AA and
\AA. Measurements of magnetic susceptibility, heat capacity,
electrical resistivity, and electron spin resonance (ESR) reveal that
EuPtIn is a metallic Curie-Weiss paramagnet at high temperatures and
presents antiferromagnetic (AFM) ordering below K. In addition, we
observe a successive anomaly at K and a spin-flop transition at
T applied along the -plane. In the paramagnetic state, a
single Eu Dysonian ESR line with a Korringa relaxation rate of Oe/K is observed. Interestingly, even at high temperatures, both ESR
linewidth and electrical resistivity reveal a similar anisotropy. We discuss a
possible common microscopic origin for the observed anisotropy in these
physical quantities likely associated with an anisotropic magnetic interaction
between Eu 4 electrons mediated by conduction electrons.Comment: 5 pages, 5 figure
Superconductivity without Fe or Ni in the phosphides BaIr2P2 and BaRh2P2
Heat capacity, resistivity, and magnetic susceptibility measurements confirm
bulk superconductivity in single crystals of BaIrP (T=2.1K) and
BaRhP (T = 1.0 K). These compounds form in the ThCrSi (122)
structure so they are isostructural to both the Ni and Fe pnictides but not
isoelectronic to either of them. This illustrates the importance of structure
for the occurrence of superconductivity in the 122 pnictides. Additionally, a
comparison between these and other ternary phosphide superconductors suggests
that the lack of interlayer bonding favors superconductivity. These
stoichiometric and ambient pressure superconductors offer an ideal playground
to investigate the role of structure for the mechanism of superconductivity in
the absence of magnetism.Comment: Published in Phys Rev B: Rapid Communication
- …