438 research outputs found

    Relationship between cardiovascular risk and lipid testing in one health care system: a retrospective cohort study.

    Get PDF
    BackgroundThe US Preventive Services Taskforce (USPSTF) recommends routine lipid screening beginning age 35 for men [1]. For women age 20 and older, as well as men age 20-34, screening is recommended if cardiovascular risk factors are present. Prior research has focused on underutilization but not overuse of lipid testing. The objective is to document over- and under-use of lipid testing in an insured population of persons at low, moderate and high cardiovascular disease (CVD) risk for persons not already on statins.MethodsThe study is a retrospective cohort study that included all adults without prior CVD who were continuously enrolled in a large integrated healthcare system from 2005 to 2010. Measures included lipid test frequency extracted from administrative data and Framingham cardiovascular risk equations applied using electronic medical record data. Five year lipid testing patterns were examined by age, sex and CVD risk. Generalized linear models were used to estimate the relative risk for over testing associated with patient characteristics.ResultsAmong males and females for whom testing is not recommended, 35.8 % and 61.5 % received at least one lipid test in the prior 5 years and 8.4 % and 24.4 % had two or more. Over-testing was associated with age, race, comorbidity, primary care use and neighborhood income. Among individuals at moderate and high-risk (not already treated with statins) and for whom screening is recommended, between 21.4 % and 25.1 % of individuals received no screening in the prior 5 years.ConclusionsBased on USPSTF lipid screening recommendations, this study documents substantial over-testing among individuals with low CVD risk and under-testing among individuals with moderate to high-risk not already on statins. Opportunity exists to better focus lipid screening efforts appropriate to CVD risk

    Using the Active Collimator and Shield Assembly of an EXIST-Type Mission as a Gamma-Ray Burst Spectrometer

    Full text link
    The Energetic X-ray Imaging Survey Telescope (EXIST) is a mission design concept that uses coded masks seen by Cadmium Zinc Telluride (CZT) detectors to register hard X-rays in the energy region from 10 keV to 600 keV. A partially active or fully active anti-coincidence shield/collimator with a total area of between 15 and 35 square meters will be used to define the field of view of the CZT detectors and to suppress the background of cosmic-ray-induced events. In this paper, we describe the use of a sodium activated cesium iodide shield/collimator to detect gamma-ray bursts (GRBs) and to measure their energy spectra in the energy range from 100 keV up to 10 MeV. We use the code GEANT4 to simulate the interactions of photons and cosmic rays with the spacecraft and instrument and the code DETECT2000 to simulate the optical properties of the scintillation detectors. The shield collimator achieves a nu-F-nu sensitivity of 3 x 10^(-9) erg cm^(-2) s^(-1) and 2 x 10^(-8) erg cm^(-2) s^(-1) at 100 keV and 600 keV, respectively. The sensitivity is well matched to that of the coded mask telescope. The broad energy coverage of an EXIST-type mission with active shields will constrain the peak of the spectral energy distribution (SED) for a large number of GRBs. The measurement of the SED peak may be key for determining photometric GRB redshifts and for using GRBs as cosmological probes.Comment: 20 pages, 10 Figures, Accepted May 19, 2006 A&

    The optical counterpart to gamma-ray burst GRB970228 observed using the Hubble Space Telescope

    Get PDF
    Although more than 2,000 astronomical gamma-ray bursts (GRBs) have been detected, and numerous models proposed to explain their occurrence, they have remained enigmatic owing to the lack of an obvious counterpart at other wavelengths. The recent ground-based detection of a transient source in the vicinity of GRB 970228 may therefore have provided a breakthrough. The optical counterpart appears to be embedded in an extended source which, if a galaxy as has been suggested, would lend weight to those models that place GRBs at cosmological distances. Here we report the observations using the Hubble Space Telescope of the transient counterpart and extended source 26 and 39 days after the initial gamma-ray outburst. We find that the counterpart has faded since the initial detection (and continues to fade), but the extended source exhibits no significant change in brightness between the two dates of observations reported here. The size and apparent constancy between the two epochs of HST observations imply that it is extragalactic, but its faintness makes a definitive statement about its nature difficult. Nevertheless, the decay profile of the transient source is consistent with a popular impulsive-fireball model, which assumes a merger between two neutron stars in a distant galaxy.Comment: 11 pages + 2 figures. To appear in Nature (29 May 1997 issue

    Coherent Manipulation of Quantum Delta-kicked Dynamics: Faster-than-classical Anomalous Diffusion

    Full text link
    Large transporting regular islands are found in the classical phase space of a modified kicked rotor system in which the kicking potential is reversed after every two kicks. The corresponding quantum system, for a variety of system parameters and over long time scales, is shown to display energy absorption that is significantly faster than that associated with the underlying classical anomalous diffusion. The results are of interest to both areas of quantum chaos and quantum control.Comment: 6 pages, 4 figures, to appear in Physical Review

    Spectrum of Mutations in the RPGR Gene That Are Identified in 20% of Families with X-Linked Retinitis Pigmentosa

    Get PDF
    SummaryThe RPGR (retinitis pigmentosa GTPase regulator) gene for RP3, the most frequent genetic subtype of X-linked retinitis pigmentosa (XLRP), has been shown to be mutated in 10%–15% of European XLRP patients. We have examined the RPGR gene for mutations in a cohort of 80 affected males from apparently unrelated XLRP families, by direct sequencing of the PCR-amplified products from the genomic DNA. Fifteen different putative disease-causing mutations were identified in 17 of the 80 families; these include four nonsense mutations, one missense mutation, six microdeletions, and four intronic-sequence substitutions resulting in splice defects. Most of the mutations were detected in the conserved N-terminal region of the RPGR protein, containing tandem repeats homologous to those present in the RCC-1 protein (a guanine nucleotide-exchange factor for Ran-GTPase). Our results indicate that mutations either in as yet uncharacterized sequences of the RPGR gene or in another gene located in its vicinity may be a more frequent cause of XLRP. The reported studies will be beneficial in establishing genotype-phenotype correlations and should lead to further investigations seeking to understand the mechanism of disease pathogenesis

    Spectrum of Mutations in the RPGR Gene That Are Identified in 20% of Families with X-Linked Retinitis Pigmentosa

    Get PDF
    SummaryThe RPGR (retinitis pigmentosa GTPase regulator) gene for RP3, the most frequent genetic subtype of X-linked retinitis pigmentosa (XLRP), has been shown to be mutated in 10%–15% of European XLRP patients. We have examined the RPGR gene for mutations in a cohort of 80 affected males from apparently unrelated XLRP families, by direct sequencing of the PCR-amplified products from the genomic DNA. Fifteen different putative disease-causing mutations were identified in 17 of the 80 families; these include four nonsense mutations, one missense mutation, six microdeletions, and four intronic-sequence substitutions resulting in splice defects. Most of the mutations were detected in the conserved N-terminal region of the RPGR protein, containing tandem repeats homologous to those present in the RCC-1 protein (a guanine nucleotide-exchange factor for Ran-GTPase). Our results indicate that mutations either in as yet uncharacterized sequences of the RPGR gene or in another gene located in its vicinity may be a more frequent cause of XLRP. The reported studies will be beneficial in establishing genotype-phenotype correlations and should lead to further investigations seeking to understand the mechanism of disease pathogenesis

    A Nutritional Formulation for Cognitive Performance and Mood in Alzheimer’s Disease and Mild Cognitive Impairment: A Phase II Multi-site Randomized Trial with an Open-label Extension

    Get PDF
    Background: It is increasingly recognized that interventions for dementia must shift towards prevention to obtain maximal efficacy and any significant degree of disease modification. Nutritional supplementation with single agents has shown varied results, suggesting the need for combinatorial intervention. Methods: We conducted a 3-month, randomized, multi-site, phase II study in which 141 individuals diagnosed with Alzheimer’s disease (AD) and 34 individuals with Mild Cognitive Impairment received a nutraceutical formulation (NF; folate, alpha-tocopherol, B12, S-adenosyl methioinine, N-acetyl cysteine, acetyl-L-carnitine) or indistinguishable placebo under double-blind conditions, followed by an open-label extension in which all individuals received NF for a total of 1yr. An additional 38 individuals with AD received NF under open-label conditions from baseline for 1yr. The primary outcome was defined as cognitive performance. Secondary outcomes were defined as behavioral and psychological symptoms of dementia and activities of daily living. Results: Participants randomized to NF improved statistically within 3 months in cognitive performance as ascertained by Clox-1 and the Dementia Rating Scale, and their caregivers reported improvement in Neuropsychiatric Inventory. Participants receiving NF either continued to improve or maintained their baseline performance during open-label extensions. Participants randomized to placebo did not improve, but during open-label extensions displayed similar improvement within 3 months to that of participants initially randomized to NF. Caregivers reported no change in Activities of Daily Living for either cohort. Conclusions: These findings confirm and extend prior phase I studies in which NF improved or maintained cognitive performance and behavioral symptoms for individuals with AD, and improved cognitive performance for community-dwelling individuals without dementia. In published studies with transgenic mice NF reduced PS-1 expression, beta and gamma secretase activity, Abeta deposits, phospho-tau, homocysteine and oxidative damage, and increased acetylcholine and glutathione. This comprehensive impact of NF on AD-related neuropathology supports the possibility that NF may harbor disease-modifying properties

    Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model

    Get PDF
    Mitochondrial dysfunction is a hallmark of neurodegenerative diseases including Alzheimer’s disease (AD), with morphological and functional abnormalities limiting the electron transport chain and ATP production. A contributing factor of mitochondrial abnormalities is loss of nicotinamide adenine dinucleotide (NAD), an important cofactor in multiple metabolic reactions. Depletion of mitochondrial and consequently cellular NAD(H) levels by activated NAD glycohydrolases then culminates in bioenergetic failure and cell death. De Novo NAD+ synthesis from tryptophan requires a multi-step enzymatic reaction. Thus, an alternative strategy to maintain cellular NAD+ levels is to administer NAD+ precursors facilitating generation via a salvage pathway. We administered nicotinamide mononucleotide (NMN), an NAD+ precursor to APP(swe)/PS1(ΔE9) double transgenic (AD-Tg) mice to assess amelioration of mitochondrial respiratory deficits. In addition to mitochondrial respiratory function, we examined levels of full-length mutant APP, NAD+-dependent substrates (SIRT1 and CD38) in homogenates and fission/fusion proteins (DRP1, OPA1 and MFN2) in mitochondria isolated from brain. To examine changes in mitochondrial morphology, bigenic mice possessing a fluorescent protein targeted to neuronal mitochondria (CaMK2a-mito/eYFP), were administered NMN. Mitochondrial oxygen consumption rates were examined in N2A neuroblastoma cells and non-synaptic brain mitochondria isolated from mice (3 months). Western blotting was utilized to assess APP, SIRT1, CD38, DRP1, OPA1 and MFN2 in brain of transgenic and non-transgenic mice (3–12 months). Mitochondrial morphology was assessed with confocal microscopy. One-way or two-way analysis of variance (ANOVA) and post-hoc Holm-Sidak method were used for statistical analyses of data. Student t-test was used for direct comparison of two groups. We now demonstrate that mitochondrial respiratory function was restored in NMN-treated AD-Tg mice. Levels of SIRT1 and CD38 change with age and NMN treatment. Furthermore, we found a shift in dynamics from fission to fusion proteins in the NMN-treated mice. This is the first study to directly examine amelioration of NAD+ catabolism and changes in mitochondrial morphological dynamics in brain utilizing the immediate precursor NMN as a potential therapeutic compound. This might lead to well-defined physiologic abnormalities that can serve an important role in the validation of promising agents such as NMN that target NAD+ catabolism preserving mitochondrial function.https://doi.org/10.1186/s12883-015-0272-
    • …
    corecore