590 research outputs found

    STAT3 in the systemic inflammation of cancer cachexia

    Get PDF
    Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both pathological and protective functions for STAT3 in other organs during cachexia. STAT3 also contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia and the potential and perils for targeting STAT3 to reduce cachexia and prolong survival in cancer patients

    Moving Toward a Competency Based Model for Fostering Law Students’ Relational Skills

    Get PDF
    Legal education has long been criticized for failing to provide adequate professional training to prepare graduates for legal practice realities. Many sources have lamented the lack of sufficient attention to the range of competencies necessary for law graduates to be effective practitioners and develop a positive professional identity, including those that are intra-personal, such as self-awareness, critical self-reflection, and self-directedness; those that are interpersonal, such as deep and reflective listening, empathy, compassion, cross-cultural communication, and dialogue; and those that engage with the social/systemic dimension of lawyering, such as appreciating the role of multiple identities, implicit bias, privilege and power, and structural racism. For this article, we refer to this entire set of competencies as relational competencies. One notable exception to this sustained critique of legal education has been the field of clinical legal education, including law school clinics and externships. Nevertheless, what is still lacking is a more systematic approach to clinical law students\u27 supervision around the knowledge, skills, and values connected to relational competencies. In this article, we aim to begin a conversation about how we can move to a competency-based approach to supervision of law students\u27 in clinics and externships. We draw significant guidance from the field of psychology, where there is a well-established track record in using a competency-based approach to supervise trainees. By emphasizing the importance of relational competencies in legal education, we can more effectively promote well-being among students, their current and future clients, and the legal profession\u27s culture. Ultimately, we hope to invite a broader conversation about a more holistic approach to legal professionals\u27 licensing and ongoing supervision

    Mass spectrometric gas composition measurements associated with jet interaction tests in a high-enthalpy wind tunnel

    Get PDF
    Knowledge of test gas composition is important in wind-tunnel experiments measuring aerothermodynamic interactions. This paper describes measurements made by sampling the top of the test section during runs of the Langley 7-Inch High-Temperature Tunnel. The tests were conducted to determine the mixing of gas injected from a flat-plate model into a combustion-heated hypervelocity test stream and to monitor the CO2 produced in the combustion. The Mass Spectrometric (MS) measurements yield the mole fraction of N2 or He and CO2 reaching the sample inlets. The data obtained for several tunnel run conditions are related to the pressures measured in the tunnel test section and at the MS ionizer inlet. The apparent distributions of injected gas species and tunnel gas (CO2) are discussed relative to the sampling techniques. The measurements provided significant real-time data for the distribution of injected gases in the test section. The jet N2 diffused readily from the test stream, but the jet He was mostly entrained. The amounts of CO2 and Ar diffusing upward in the test section for several run conditions indicated the variability of the combustion-gas test-stream composition

    Inhibition of the Redox Function of APE1/Ref-1 in Myeloid Leukemia Cell Lines Results in a Hypersensitive Response to Retinoic Acid-induced Differentiation and Apoptosis

    Get PDF
    Objective The standard of care for promyelocytic leukemia includes use of the differentiating agent all-trans retinoic acid (RA) and chemotherapy. RA induces cell differentiation through retinoic acid receptor (RAR) transcription factors. Because redox mechanisms influence how readily transcription factors bind to DNA response elements (RARE), the impact of small molecule (E3330) inhibition of the redox regulatory protein, apurinic-apyrimidinic endonuclease/redox effector factor (APE1/Ref-1) on RAR DNA binding and function in RA-induced myeloid leukemia cell differentiation and apoptosis was investigated. Materials and Methods The redox function of APE1 was studied using the small molecule inhibitor E3330 in HL-60 and PLB acute myeloid leukemia cells. Electrophoretic mobility shift assays were employed to determine effect of inhibitor on APE1/Ref-1 redox signaling function. Trypan blue assays, Annexin-V/propidium iodide and CD11b staining, and real-time polymerase chain reaction analyses were employed to determine survival, apoptosis, and differentiation status of cells in culture. Results RARα binds to its RARE in a redox-dependent manner mediated by APE1/Ref-1 redox regulation. Redox-dependent RAR-RARE binding is blocked by E3330, a small molecule redox inhibitor of APE1/Ref-1. Combination treatment of RA + E3330 results in a profound hypersensitivity of myeloid leukemia cells to RA-induced differentiation and apoptosis. Additionally, redox inhibition by E3330 results in enhanced RAR target gene, BLR-1, expression in myeloid leukemia cells. Conclusions The redox function of APE1/Ref-1 regulates RAR binding to its DNA RAREs influencing the response of myeloid leukemia cells to RA-induced differentiation. Targeting of APE1/Ref-1 redox function may allow manipulation of the retinoid response with therapeutic implications

    Exploiting the Ref-1-APE1 node in cancer signaling and other diseases: from bench to clinic

    Get PDF
    Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic

    Machine translation for subtitling: a large-scale evaluation

    Get PDF
    This article describes a large-scale evaluation of the use of Statistical Machine Translation for professional subtitling. The work was carried out within the FP7 EU-funded project SUMAT and involved two rounds of evaluation: a quality evaluation and a measure of productivity gain/loss. We present the SMT systems built for the project and the corpora they were trained on, which combine professionally created and crowd-sourced data. Evaluation goals, methodology and results are presented for the eleven translation pairs that were evaluated by professional subtitlers. Overall, a majority of the machine translated subtitles received good quality ratings. The results were also positive in terms of productivity, with a global gain approaching 40%. We also evaluated the impact of applying quality estimation and filtering of poor MT output, which resulted in higher productivity gains for filtered files as opposed to fully machine-translated files. Finally, we present and discuss feedback from the subtitlers who participated in the evaluation, a key aspect for any eventual adoption of machine translation technology in professional subtitlin

    Ref-1/APE1 as Transcriptional Regulator and Novel Therapeutic Target in Pediatric T-cell Leukemia

    Get PDF
    The increasing characterization of childhood acute lymphoblastic leukemia (ALL) has led to the identification of multiple molecular targets, but have yet to translate into more effective targeted therapies, particularly for high-risk, relapsed T-cell ALL. Searching for master regulators controlling multiple signaling pathways in T-ALL, we investigated the multi-functional protein redox factor-1 (Ref-1/APE1), which acts as a signaling "node" by exerting redox regulatory control of transcription factors important in leukemia. Leukemia patients' transcriptome databases showed increased expression in T-ALL of Ref-1 and other genes of the Ref-1/SET interactome. Validation studies demonstrated that Ref-1 is expressed in high-risk leukemia T-cells, including in patient biopsies. Ref-1 redox function is active in leukemia T-cells, regulating the Ref-1 target NF-kB, and inhibited by the redox-selective Ref-1 inhibitor E3330. Ref-1 expression is not regulated by Notch signaling, but is upregulated by glucocorticoid treatment. E3330 disrupted Ref-1 redox activity in functional studies and resulted in marked inhibition of leukemia cell viability, including T-ALL lines representing different genotypes and risk groups. Potent leukemia cell inhibition was seen in primary cells from ALL patients, relapsed and glucocorticoid-resistant T-ALL cells, and cells from a murine model of Notch-induced leukemia. Ref-1 redox inhibition triggered leukemia cell apoptosis and down-regulation of survival genes regulated by Ref-1 targets. For the first time, this work identifies Ref-1 as a novel molecular effector in T-ALL and demonstrates that Ref-1 redox inhibition results in potent inhibition of leukemia T-cells, including relapsed T-ALL. These data also support E3330 as a specific Ref-1 small molecule inhibitor for leukemia

    Identification and Characterization of AES-135, a Hydroxamic Acid-Based HDAC Inhibitor That Prolongs Survival in an Orthotopic Mouse Model of Pancreatic Cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, incurable cancer with a 20% 1 year survival rate. While standard-of-care therapy can prolong life in a small fraction of cases, PDAC is inherently resistant to current treatments, and novel therapies are urgently required. Histone deacetylase (HDAC) inhibitors are effective in killing pancreatic cancer cells in in vitro PDAC studies, and although there are a few clinical studies investigating combination therapy including HDAC inhibitors, no HDAC drug or combination therapy with an HDAC drug has been approved for the treatment of PDAC. We developed an inhibitor of HDACs, AES-135, that exhibits nanomolar inhibitory activity against HDAC3, HDAC6, and HDAC11 in biochemical assays. In a three-dimensional coculture model, AES-135 kills low-passage patient-derived tumor spheroids selectively over surrounding cancer-associated fibroblasts and has excellent pharmacokinetic properties in vivo. In an orthotopic murine model of pancreatic cancer, AES-135 prolongs survival significantly, therefore representing a candidate for further preclinical testing

    Activation of the integrated stress response (ISR) pathways in response to Ref-1 inhibition in human pancreatic cancer and its tumor microenvironment

    Get PDF
    Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is characterized by a profound inflammatory tumor microenvironment (TME) with high heterogeneity, metastatic propensity, and extreme hypoxia. The integrated stress response (ISR) pathway features a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) and regulate translation in response to diverse stress conditions, including hypoxia. We previously demonstrated that eIF2 signaling pathways were profoundly affected in response to Redox factor-1 (Ref-1) knockdown in human PDAC cells. Ref-1 is a dual function enzyme with activities of DNA repair and redox signaling, responds to cellular stress, and regulates survival pathways. The redox function of Ref-1 directly regulates multiple transcription factors including HIF-1α, STAT3, and NF-κB, which are highly active in the PDAC TME. However, the mechanistic details of the crosstalk between Ref-1 redox signaling and activation of ISR pathways are unclear. Following Ref-1 knockdown, induction of ISR was observed under normoxic conditions, while hypoxic conditions were sufficient to activate ISR irrespective of Ref-1 levels. Inhibition of Ref-1 redox activity increased expression of p-eIF2 and ATF4 transcriptional activity in a concentration-dependent manner in multiple human PDAC cell lines, and the effect on eIF2 phosphorylation was PERK-dependent. Treatment with PERK inhibitor, AMG-44 at high concentrations resulted in activation of the alternative ISR kinase, GCN2 and induced levels of p-eIF2 and ATF4 in both tumor cells and cancer-associated fibroblasts (CAFs). Combination treatment with inhibitors of Ref-1 and PERK enhanced cell killing effects in both human pancreatic cancer lines and CAFs in 3D co-culture, but only at high doses of PERK inhibitors. This effect was completely abrogated when Ref-1 inhibitors were used in combination with GCN2 inhibitor, GCN2iB. We demonstrate that targeting of Ref-1 redox signaling activates the ISR in multiple PDAC lines and that this activation of ISR is critical for inhibition of the growth of co-culture spheroids. Combination effects were only observed in physiologically relevant 3D co-cultures, suggesting that the model system utilized can greatly affect the outcome of these targeted agents. Inhibition of Ref-1 signaling induces cell death through ISR signaling pathways, and combination of Ref-1 redox signaling blockade with ISR activation could be a novel therapeutic strategy for PDAC treatment

    Longitudinal Bioluminescence Imaging of Primary Versus Abdominal Metastatic Tumor Growth in Orthotopic Pancreatic Tumor Models in NSG Mice

    Get PDF
    Objectives: The purpose of the present study was to develop and validate noninvasive bioluminescence imaging methods for differentially monitoring primary and abdominal metastatic tumor growth in mouse orthotopic models of pancreatic cancer. Methods: A semiautomated maximum entropy segmentation method was implemented for the primary tumor region of interest, and a rule-based method for manually drawing a region of interest for the abdominal metastatic region was developed for monitoring tumor growth in orthotopic models of pancreatic cancer. The 2 region-of-interest methods were validated by having 2 observers independently segment Panc-1 tumors, and the results were compared with the number of mesenteric lymph node nodules and histopathologic assessment of liver metastases. The findings were extended to orthotopic tumors of the more metastatic MIA PaCa-2 and AsPC-1 cells where separate groups of animals were implanted with different numbers of cells. Results: The results demonstrated that the segmentation methods were highly reliable, reproducible, and robust and allowed statistically significant discrimination in the growth rates of primary and abdominal metastatic tumors of different cell lines implanted with different numbers of cells. Conclusions: The present results demonstrate that primary tumors and abdominal metastatic foci in orthotopic pancreatic cancer models can be reliably quantified separately and noninvasively over time with bioluminescence imaging
    • …
    corecore