545 research outputs found
First-Fit is Linear on Posets Excluding Two Long Incomparable Chains
A poset is (r + s)-free if it does not contain two incomparable chains of
size r and s, respectively. We prove that when r and s are at least 2, the
First-Fit algorithm partitions every (r + s)-free poset P into at most
8(r-1)(s-1)w chains, where w is the width of P. This solves an open problem of
Bosek, Krawczyk, and Szczypka (SIAM J. Discrete Math., 23(4):1992--1999, 2010).Comment: v3: fixed some typo
A Characterization of Mixed Unit Interval Graphs
We give a complete characterization of mixed unit interval graphs, the
intersection graphs of closed, open, and half-open unit intervals of the real
line. This is a proper superclass of the well known unit interval graphs. Our
result solves a problem posed by Dourado, Le, Protti, Rautenbach and
Szwarcfiter (Mixed unit interval graphs, Discrete Math. 312, 3357-3363 (2012)).Comment: 17 pages, referees' comments adde
Recognizing Members of the Tournament Equilibrium Set is NP-hard
A recurring theme in the mathematical social sciences is how to select the
"most desirable" elements given a binary dominance relation on a set of
alternatives. Schwartz's tournament equilibrium set (TEQ) ranks among the most
intriguing, but also among the most enigmatic, tournament solutions that have
been proposed so far in this context. Due to its unwieldy recursive definition,
little is known about TEQ. In particular, its monotonicity remains an open
problem up to date. Yet, if TEQ were to satisfy monotonicity, it would be a
very attractive tournament solution concept refining both the Banks set and
Dutta's minimal covering set. We show that the problem of deciding whether a
given alternative is contained in TEQ is NP-hard.Comment: 9 pages, 3 figure
Mean-risk models using two risk measures: A multi-objective approach
This paper proposes a model for portfolio optimisation, in which distributions are characterised and compared on the basis of three statistics: the expected value, the variance and the CVaR at a specified confidence level. The problem is multi-objective and transformed into a single objective problem in which variance is minimised while constraints are imposed on the expected value and CVaR. In the case of discrete random variables, the problem is a quadratic program. The mean-variance (mean-CVaR) efficient solutions that are not dominated with respect to CVaR (variance) are particular efficient solutions of the proposed model. In addition, the model has efficient solutions that are discarded by both mean-variance and mean-CVaR models, although they may improve the return distribution. The model is tested on real data drawn from the FTSE 100 index. An analysis of the return distribution of the chosen portfolios is presented
Behavioral implications of shortlisting procedures
We consider two-stage “shortlisting procedures” in which the menu of alternatives is first pruned by some process or criterion and then a binary relation is maximized. Given a particular first-stage process, our main result supplies a necessary and sufficient condition for choice data to be consistent with a procedure in the designated class. This result applies to any class of procedures with a certain lattice structure, including the cases of “consideration filters,” “satisficing with salience effects,” and “rational shortlist methods.” The theory avoids background assumptions made for mathematical convenience; in this and other respects following Richter’s classical analysis of preference-maximizing choice in the absence of shortlisting
Divergent mathematical treatments in utility theory
In this paper I study how divergent mathematical treatments affect mathematical modelling, with a special focus on utility theory. In particular I examine recent work on the ranking of information states and the discounting of future utilities, in order to show how, by replacing the standard analytical treatment of the models involved with one based on the framework of Nonstandard Analysis, diametrically opposite results are obtained. In both cases, the choice between the standard and nonstandard treatment amounts to a selection of set-theoretical parameters that cannot be made on purely empirical grounds. The analysis of this phenomenon gives rise to a simple logical account of the relativity of impossibility theorems in economic theory, which concludes the paper
Topological aggregation, the twin paradox and the No Show paradox
International audienceConsider the framework of topological aggregation introduced by Chichilnisky (1980). We prove that in this framework the Twin Paradox and the No Show Paradox cannot be avoided. Anonymity and unanimity are not needed to obtain these results
Introducing the composite time trade-off: a test of feasibility and face validity
__Abstract__
__Introduction__ This study was designed to test the feasibility and face validity of the composite time trade-off (composite TTO), a new approach to TTO allowing for a more consistent elicitation of negative health state values.
__Methods__ The new instrument combines a conventional TTO to elicit values for states regarded better than dead and a lead-time TTO for states worse than dead.
__Results__ A total of 121 participants completed the composite TTO for ten EQ-5D-5L health states. Mean values ranged from −0.104 for health state 53555 to 0.946 for 21111. The instructions were clear to 98 % of the respondents, and 95 % found the task easy to understand, indicating feasibility. Further, the average number of steps taken in the iteration procedure to achieve the point of indifference in the TTO and the average duration of each task were indicative of a deliberate cognitive process.
__Conclusion__ Face validity was confirmed by the high mean values for the mild health states (>0.90) and low mean values for the severe states (<0.42). In conclusion, this study demonstrates the feasibility and face validity of the composite TTO in a face-to-face standardized computer-assisted interview setting
Reasons and Means to Model Preferences as Incomplete
Literature involving preferences of artificial agents or human beings often
assume their preferences can be represented using a complete transitive binary
relation. Much has been written however on different models of preferences. We
review some of the reasons that have been put forward to justify more complex
modeling, and review some of the techniques that have been proposed to obtain
models of such preferences
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
- …
