
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Conference papers School of Computer Sciences 

2019 

A Self Healing Microservices Architecture: A Case Study in Docker A Self Healing Microservices Architecture: A Case Study in Docker 

Swarm Cluster Swarm Cluster 

Basel Magableh 

Muder Almiani 

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon 

 Part of the Computer Sciences Commons 

This Conference Paper is brought to you for free and 
open access by the School of Computer Sciences at 
ARROW@TU Dublin. It has been accepted for inclusion in 
Conference papers by an authorized administrator of 
ARROW@TU Dublin. For more information, please 
contact arrow.admin@tudublin.ie, 
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 4.0 License 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F325&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F325&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331790124

A Self Healing Microservices Architecture: A Case Study in Docker Swarm

Cluster

Chapter · January 2020

DOI: 10.1007/978-3-030-15032-7_71

CITATIONS

3
READS

2,372

2 authors:

Some of the authors of this publication are also working on these related projects:

Intelligent Intrusion Detection Systems View project

Deep Recurrent Q-Network View project

Basel Magableh

Technological University Dublin - City Campus

26 PUBLICATIONS   72 CITATIONS   

SEE PROFILE

Muder Almi'ani

Gulf University for Science and Technology (Kuwait)

57 PUBLICATIONS   234 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Basel Magableh on 09 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/331790124_A_Self_Healing_Microservices_Architecture_A_Case_Study_in_Docker_Swarm_Cluster?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/331790124_A_Self_Healing_Microservices_Architecture_A_Case_Study_in_Docker_Swarm_Cluster?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Intelligent-Intrusion-Detection-Systems?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Deep-Recurrent-Q-Network?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Basel-Magableh?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Basel-Magableh?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technological-University-Dublin-City-Campus?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Basel-Magableh?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muder-Almiani?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muder-Almiani?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Gulf-University-for-Science-and-Technology-Kuwait?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muder-Almiani?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Basel-Magableh?enrichId=rgreq-498e63fda2ba316d7b56859b1174bf4c-XXX&enrichSource=Y292ZXJQYWdlOzMzMTc5MDEyNDtBUzo3NDU4MDUzOTY4NTI3MzZAMTU1NDgyNTI3MTY2Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


A Self Healing Microservices
Architecture: A Case Study in Docker

Swarm Cluster

Basel Magableh1(B) and Muder Almiani2

1 School of Computer Science, Technological University Dublin, Dublin, Ireland
basel.magableh@dit.ie

2 Al-Hussein Bin Talal University, Ma’an, Jordan
malmiani@my.bridgeport.edu

Abstract. One desired aspect of a self-adapting microservices architec-
ture is the ability to continuously monitor the operational environment,
detect and observe anomalous behaviour as well as implement a rea-
sonable policy for self-scaling, self-healing, and self-tuning the computa-
tional resources in order to dynamically respond to a sudden change in its
operational environment. Often the behaviour of a microservices archi-
tecture continuously changes over time and the identification of both nor-
mal and abnormal behaviours of running services becomes a challenging
task. This paper proposes a self-healing Microservice architecture that
continuously monitors the operational environment, detects and observes
anomalous behaviours, and provides a reasonable adaptation policy using
a multi-dimensional utility-based model. This model preserves the cluster
state and prevents multiple actions to taking place at the same time. It
also guarantees that the executed adaptation action fits the current exe-
cution context and achieves the adaptation goals. The results show the
ability of this model to dynamically scale the architecture horizontally
or vertically in response to the context changes.

Keywords: Self healing · Microservices architecture ·
Anomaly detection · Run-time configuration

1 Introduction

A microservices architecture could be defined in the context of a service-oriented
architecture as a composition of tiny fine-grained distributed loosely coupled
building blocks of software components [27]. In a microservices cluster, the per-
formance of its nodes might fluctuate around demands to accommodate scala-
bility, orchestration and load balancing issued by the leader node. To achieve
an optimal level of performance, the architecture requires a model that (i) is
able to detect anomalies in real-time, (ii) with a high accuracy and (iii) leads
to a low rate of false alarms. In addition, a set of possible configurations should
be designed and incorporated in the architecture in order to adapt itself to the
c© Springer Nature Switzerland AG 2020
L. Barolli et al. (Eds.): AINA 2019, AISC 926, pp. 846–858, 2020.
https://doi.org/10.1007/978-3-030-15032-7_71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15032-7_71&domain=pdf
https://doi.org/10.1007/978-3-030-15032-7_71


A Self Healing Microservices Architecture 847

changes in its operational environment. This adaptability requires a dynamic
decision making component that is capable of selecting a desired cluster state
according to a set of constraints. This research proposes a method to continu-
ously observe and monitor the Docker Swarm cluster state and detect anomalous
behaviour. This method also aims at equipping a microservices architecture with
adaptation strategies able to reason about detected anomalies detected able to
self-adjust its parameters and to verify its actions at runtime without human
intervention. In details, the proposed method offers microservices architecture
a self-adaptation property by following the MAPE-K (Monitor-Analyse-Plan-
Execute over a shared Knowledge) model. The main contribution of this work
is the employment of a utility function in the process of adaptation.

The remainder of the paper is structured as follows: Sect. 2 provides an
overview of self-healing architectures and surveys the approaches for anomaly
detection and run-time configuration. Section 3 presents a model that can con-
tinuously observe microservices architecture with self-healing capabilities. Adap-
tation planning and execution is discussed in Sect. 3.2. The implementation of
this model is discussed in Sect. 3.3. Section 3.4 is focused on presenting results
followed by a critical discussion of the effectiveness of this model. Section 4 sum-
marises this research, highlighting its contribution and setting future work.

2 Related Work

A microservices architecture is a composition of tiny fine-grained distributed
loosely coupled building blocks of software components [27]. A self-healing archi-
tecture refers to the capability of its software components to discover, diagnose
and react to disruptions. Such architecture can also anticipate potential problems
and, accordingly, take suitable actions to prevent a failure by self-adaptation [14].
In order to achieve this, a microservices architecture require a decision-making
strategy that can work in real-time and is able to reason about its own state
and its surrounding environment in a closed control loop and then to act accord-
ingly [4]. Typically, a self-adapting architecture should implement the MAPE-K
(Monitor-Analyse-Plan-Execute over a shared Knowledge) approach. This app-
roach includes: (i) gathering of data related to the surrounding context (context
sensing); (ii) context observation and detection; (iii) dynamic decision making;
(iv) execution of adaptation through actions to achieve a set of objectives defined
as QoS; (v) verification/validation of the applied adaptation actions in terms of
accuracy in meeting the adaptation objectives.

A number of approaches exist for achieving high degrees of self-adaptability.
For instance, in [26], self-adaptability involves context sensing and collection,
observation and detection of contextual changes in an operational environment.
Self-adaptation in an architecture and a dynamic adjustment of its behaviour can
be achieved using parameter-tuning [5], component-based composition [18], or
middleware-based approaches [6]. An important aspect of a self-adaptive system
is related to its ability to validate and verify the adaptation action at run-time.
This can be done by employing game theory [28], utility theory [15] or a model-
driven approach as in [24]. Context information refers to any information that



848 B. Magableh and M. Almiani

is computationally accessible and upon which behavioural variations depend
[13]. Context observation and detection approaches are used to detect abnor-
mal behaviour within the microservices architecture at run-time. Related work
in context modelling, context detection and engineering self-adaptive software
systems are discussed in [4,8,23,26]. In dynamic decision making and context
reasoning an architecture should be able to monitor and detect normal/abnormal
behaviour by continuously monitoring the contextual information found in the
microservices cluster. There are two phases for detecting anomalies in a software
system: a training phase which involves profiling the normal behaviour of the
system; and a phase aimed at testing the learned profile of the system with new
data and employing it to detect normal/abnormal behaviours [19].

Three major techniques for anomaly detection have emerged from the litera-
ture: (a) statistical anomaly detection, (b) data-mining and (c) machine learning-
based techniques. In the statistical methods, the anomaly detection algorithm
usually observes the activity of the software system and generates profiles with
system metrics such as CPU and memory to represent its behaviour. Various
statistical anomaly detection systems have been proposed as in [2,22]. They
provide accurate notifications of malicious attacks that occur over long peri-
ods of time and this class of systems performs better than the other classes in
detecting denial-of-service attacks [19]. In statistical anomaly detection a skilled
attacker might train a statistical anomaly detection system to accept the abnor-
mal behaviour as normal. It is difficult to determine the thresholds that make
a balance between the likelihood of a false negative – the system fails to iden-
tify an activity as an abnormal behaviour – and the likelihood of a false positive
(false alarms). Therefore, statistical anomaly detection systems need an accurate
model with precise distributions for each metric. In practice, the behaviour of
virtual machines/computers cannot be entirely modelled using solely statistical
methods. Data-mining anomaly detection techniques are about finding insights
which are statistically reliable, previously unknown, and actionable from data
[21]. The traditional data-mining process involves discovering a novel, distin-
guished and useful data pattern in large datasets to extract hidden relationships
and information. However, two issues exist in anomaly detection in microservices
architectures: a lack of a large dataset containing information about the archi-
tecture itself, and the small number of approaches applied to these architectures
[21]. Machine learning-based anomaly detection models are data-driven and are
mainly focused on learning exclusively from past data [19]. When additional
and new data becomes available, they can intrinsically influence the detection
strategy and classify significant deviations from the normal behaviour of an
underlying software programme. Therefore, they need to be often retrained to
be in line with current data. These approaches generally use a combination
of clustering and classification algorithms to detect anomalies. The former are
used to cluster the dataset and label observations. The latter algorithms, such
as decision trees can then be used for classification to distinguish between nor-
mal/abnormal behaviour [3]. Other applications and information can be found
in [3,10,11]. It is important to highlight that, due to the opening deployment



A Self Healing Microservices Architecture 849

and limited resources generally found in a microservices cluster, a lightweight
approach to data clustering/classification should be used.

Other anomaly detection approaches exist in the literature. For example, the
Numenta Platform for Intelligent Computing (NUPIC) is based on the hierar-
chical temporal memory (HTM) model proposed in [12]. This has been exper-
imentally applied in real-time anomaly detection of streaming data [17] and it
is claimed to be efficient and tolerant to noisy data, capable to adapt to the
changes of data statistics. It can also detect extremely subtle anomalies with a
very minimal rate of false positives. In a similar study, Ahmad et al. [1] proposed
an updated version of this anomaly detection algorithm introducing the anomaly
likelihood concept. The anomaly score calculated by the NUPIC algorithm repre-
sents an immediate calculation of the predictability of the current input stream.
This approach works very well with predictable scenarios in many practical appli-
cations. As there is no noisy and unpredictable data found, the raw anomaly
score gives an accurate prediction of false negatives. However, the changes in
predictions would lead to revealing anomalies in the system’s behaviour. Thus,
instead of using the raw anomaly score, authors in [1] proposed a method for cal-
culating the anomaly likelihood by modelling the distribution of anomaly scores
and by using it to check the likelihood of the current state of the system to
identify anomalous behaviour. The anomaly likelihood is metric which defines
how anomalous the current state is based on the prediction history calculated by
the HTM model. The anomaly likelihood is calculated by maintaining a window
of the last raw anomaly scores and then calculating the normal distribution over
the last obtained/trained values. The most recent average of anomalies is then
calculated using the Gaussian tail probability function (Q-function) [7].

3 Design and Methodology

This research focuses on proposing a mechanism that can continuously observe
and monitor the microservices architecture and be able to detect anomalous
behaviour with high accuracy and generate low rate of false alarms. At the same
time, this mechanism should be able to respond to true positive alarms by sug-
gesting a set of adaptation policies (adaptation strategy), that can be deployed in
the cluster to achieve high level of self-healing in response to changes in its oper-
ating environment. The envisioned property of this mechanism is that it can be
easily deployed with fewer and smaller footprints on the limited resources found
in the tiny containers running in a microservices cluster.

3.1 Self-healing Microservices Architecture

One important aspect of a self-healing microservices architecture is the ability to
continuously monitor the operational environment, detect and observe anoma-
lous behaviour, and provide a reasonable policy for self-scaling, self-healing, and
self-tuning the computational resources to adapt a sudden changes in its opera-
tional environment dynamically at run-time. A typical microservices architecture



850 B. Magableh and M. Almiani

is shown in Fig. 1 and it was designed according to the MAPE-K model (Monitor-
Analyze-Plan-Execute over a shared Knowledge) [25].

Fig. 1. A microservices architecture implemented in Docker Swarm [25].

This model offer to the microservices architecture the following
functionalities:

• Metric collection: continuous collection of fine-grained metrics about clus-
ter nodes, services and containers such as CPU usage, Memory, Disk Reads
Bytes/sec, Network Read/s, network write/s and Disk Writes Bytes/sec)
which is streamed into the anomaly detection service at real-time;

• Model Training: the NUPIC anomaly detection service [1] continuously
runs over the streamed metrics stored in a database, enabling the training of
a model with the collected metrics;

• Anomaly Detection: collected real-time data is feed on the fly to the
NUPIC anomaly detection service, which provides two features: continuous
detection of anomalous behaviour with high accuracy and predictions about
the architecture performance based on historic data. This service can alert
the architecture about incoming spike on resources demand which can then be
used by the adaptation manager to schedule a proactive adaptation strategy
ahead of time. In addition, it is able to detect anomalies as early as possible
before the anomalous behaviour interrupts the functionality of the running
services in the cluster Ahmad et al. [1];

• Adaptation Election: once an anomalous behaviour is detected, anomaly
score and likelihood are calculated by the Anomaly Detection Service as in
Fig. 1. The alert manager services notifies the adaptation manager about the
anomaly detected and then selects the adaptation action(s) after calculat-
ing the utility value for each of the possible actions, as detailed in Sect. 3.2.
Subsequently, the Adaptation Manager uses the input of the anomaly likeli-
hood, architecture constraints (specified by the DevOp during deployment)



A Self Healing Microservices Architecture 851

and desired/predicted QoS to calculate the best variation of the adaptation
that has the highest utility;

• Adaptation Execution: the adaptation manager executes the strategies
according to the aggregated value of the utility returned by the algorithm.
Once the adaptation action is completed, a set of adaptation actions are
deployed in the architecture. To avoid, conflicts between multiple adapta-
tion polices, the adapter allows the adaptation actions to be fully completed
and verified by the cluster leader according to the consensus performed by
the RAFT algorithm [20]. It then set a cool off timer before initiating new
adaptation actions. This technique is used to avoid resources thrashing and
preserving the cluster state for auto-recovery. The adaptation manager then
sends to the cluster leader a set of instructions that might involve tuning of
cluster parameters – horizontal scaling – adding/removing nodes or vertical
scaling of microservice’s containers like scaling a service in/out;

• Adaptation Verification: The cluster leader and all managers in the cluster
subsequently vote on the adaptation action based on the RAFT consensus
algorithm [20]. The results of the vote are used to validate and verify the
adaptation action. If the adaptation action passes the voting process, it will
be executed by the cluster leader and the adaptation manager records the
adaptation attempt as successful. Otherwise, the adaptation manager keeps
the current state of the cluster and records the adaptation attempt as failed.
In both cases, the adaptation manager records the number of attempts used
to complete the adaptation actions.

3.2 Adaptation Election

To provide the model, described in the previous section, with dynamic policy
election that guarantees high accuracy of selecting the best adaptation action
that fits in the current execution context, an extension of the adaptation manager
with a policy election process by employing a utility function is proposed. This
function is aimed at computing the probability of transition from one state
to another. In this process the anomaly detection service plays a significant
role. At each state s of the microservices architecture, there is a set of context
values CV: c1, . . . , cm measuring the metrics in the operating environment such
as CPU, Memory, Disk I/O and Network. The anomaly detection service reads
the current values of all metrics in CV and NUPIC calculates the anomaly scores
AS: as1, . . . , asm and anomaly likelihoods AL: al1, . . . , alm in the current state
for each of them. The anomaly likelihood accurately defines how anomalous the
current metric is when compared to the distribution of the values learned by
the anomaly detection service. The anomaly score and the anomaly likelihood
are scalar values in [0..1]. For instance, if the alcpu is 1 and c2 is the CPU value
of 70%, then c2 can be associated with a high utility score and it might be
considered in the next adaptation action. In turn, the adaptation manager can
select an adaptation policy able to reason about the anomalous behaviour of the
CPU. In another scenario, if the anomaly likelihood is 0, then the metric can be



852 B. Magableh and M. Almiani

associated with a low utility score so it will not be considered in the subsequent
adaptation action.

W (alm, Cm) =
m∑

i=1

ali · ci (1)

U(cvx) = max(
20∑

t=1

cvix × alx) (2)

in Eq. 2 CV the vector contains the context value cvs of the context metric, AL
the vector containing all the anomaly likelihood al for each metric returned by
NUPIC. These are taken 20 times i in a time window that is set to 300 s.

From utility theory, a von Neumann-Morgenstern utility function Ui : Xi →
R assigns a real number to each quality dimension i, which we can normalize
to the range [0, 1] [9]. Across multiple dimensions of contextual changes Cm,
we can attribute a percentage weight to each dimension to account for its rela-
tive importance compared to other dimensions. These weights form the utility
preferences. The overall utility is then given by the utility preference w(cm) func-
tion calculated using Eq. 1. For example, if three objectives, u(cpu), u(memory),
u(disk), are given anomaly likelihood as follows: the first is twice as important
as the second, and the second is three times as important as the third. Then
the weight would be quantified as [w1 : 0.6, w2 : 0.3, w3 : 0.1], where the weight
is the Anomaly Likelihood of each metric. This gives the CPU metric higher
priority to be consider in the adaptation action.

In this paper. We argue that the use of anomaly likelihood to weight the
collected metrics provides an accurate calculation of the utility function and
provides the model with better estimation of the adaptation action. So the max-
imum metric is selected using the equation described in 2, which select the max-
imum W of specific metric value that has the highest Anomaly Score returned
by the Anomaly detection service.

Cost(um) =
(Current(cm) − NUPICPredicted(cm)) · (asm) · alm, cm))

UsageT ime ∗ InstanceMonthlyPrice
(3)

where Current(cm) is the current value of the metric CM , NUPICPredicted
(cm) is the predicted value of CM computer by the NUPIC algorithm,
AnomScore(cm) is the anomaly score of Cm at time ti calculated by NUPIC,
and Wi is the anomaly likelihood for metric CM as per Eq. 1. The UsageT ime)
refers to the total number of hours the node is expected to be used per day
(constant value). The InstanceMonthlyPrice is the price in $ (dollars) for pro-
visioning an instance per month. Normally this is a constant price specified by
the cloud infrastructure provider based on the instance type.

changem = (Wa(alm, Cm) − Wb(alm, Cm)) (4)

where i is the current time stamp, m is a future time stamp
we calculate the weight of the current metric Cm and the previous value.



A Self Healing Microservices Architecture 853

3.3 Experimental Setup and Evaluation Strategy

To validate the ideas presented in this paper, we design and develop a working
prototype of Microservice architecture in Docker swarm1 as shown in Fig. 1. The
cluster consisted of manager and worker nodes. Each cluster has one leader,
which maintains the cluster state and preserves the cluster logs. Also, the leader
node initializes the vote of Raft Consensus Algorithm [20] to agree/disagree on
specific value based on the consensus by all nodes in the cluster. Only the leader
node is allowed to commit and save the variable values or logs. To meet scalability
and availability, the leader node distributed the work load between the workers
based on Raft Consensus Algorithm [20]. This means that each service could be
executed by assigning multiple containers across the cluster’s nodes.

The main services implemented in this architecture are: Time series metrics
database for context collection, Nodes metrics used to collect metrics from all
nodes in the cluster, Alert and notification manager used to notify the adaptation
manager about contextual changes offered by Prometheus framework2. Docker
containers metrics collector for collecting fine-grained metrics about all running
containers in all nodes3. Reverse proxy for routing traffic between all services
in the cluster4. Unsupervised Real-time Anomaly Detection based on NUPIC5,
Adaptation manager for executing, validating the adaptation actions developed
as a prototype of this research. Time series analytic and visualisation dashboard
for observing the behaviour of the Microservices cluster6.

This live snapshot7 provides a full virtualisation of all services running in
the cluster. The evaluation of the effectiveness of this model will be based on
calculating a utility function for all metrics monitored, then it will calculate
the number of adaptation attempts, successful convergence of services/nodes, or
errors which leads to unstable state of the cluster.

The evaluation of the model is set over two stages: (i) assessing the con-
sistency of the behaviour of the cluster by evaluating the state of the swarm
after a sequence of adaptation actions. The idea is to start with no nodes and
the utility model should be able to create a new cluster and add the required
number of nodes/replicas until it reaches an stable state. In other words, this
when the cluster reaches a convergence and all the services in it are accessible
and available. The decision is then left for the adaptation manager to scale the
cluster horizontally or vertically until it reaches the sable state. (ii) evaluating
the accuracy of the model in electing the correct adaptation action by identify-
ing the highest metric value that need to be consider in the adaptation and the
selected adaptation action. In summary the evaluation criteria are: (a) criterion

1 https://docs.docker.com/engine/swarm/.
2 https://prometheus.io.
3 https://github.com/google/cadvisor.
4 https://caddyserver.com/docs/proxy.
5 http://nupic.docs.numenta.org/stable/index.html.
6 https://grafana.com.
7 https://snapshot.raintank.io/dashboard/snapshot/UJlrTzwubrRQjDwM1YFJle5zv

dK3Anr7?orgId=2.

https://docs.docker.com/engine/swarm/
https://prometheus.io
https://github.com/google/cadvisor
https://caddyserver.com/docs/proxy
http://nupic.docs.numenta.org/stable/index.html
https://grafana.com
https://snapshot.raintank.io/dashboard/snapshot/UJlrTzwubrRQjDwM1YFJle5zvdK3Anr7?orgId=2
https://snapshot.raintank.io/dashboard/snapshot/UJlrTzwubrRQjDwM1YFJle5zvdK3Anr7?orgId=2


854 B. Magableh and M. Almiani

Fig. 2. Dimensional analysis of variations of utility functions

1: the ability of the model to manage a microservices cluster and to scale it hor-
izontally or vertically until it reaches an stable state (when all the services are
available). (b) criterion 2: the ability of the model to handle dynamic changes
in the cluster and to dynamically adapt to sudden changes, such as simulated
stress test or Distributed Denial of Service attack (DDOS), without leading the
cluster to an unstable state; (c) criterion 3: the ability of the architecture to
meet demands dynamically and maintain a stable state for the cluster.

3.4 Discussion

To test the first evaluation criteria, a stress test has been executed in the cluster
manager until its CPU usage reaches 70%, which triggers an alert to the adapta-
tion manager. In turn, the adaptation manager collects the current reading of the
metrics, anomaly score and anomaly likelihood produced by NUPIC. Then, it
calculates the rate of changes for each metric in order to elect the metric that has
the highest utility. As example, Fig. 2 depicts the utility of CPU usage, memory
usage, disk reads (bytes/s), disk writes (bytes/s), docker network (sent/received
bytes/s). The CPU usage has the highest utility as confirmed by the utility
indifference indicator (curve in Fig. 2). Also, the memory usage of the service
shows slow rate of changes over time, which make it optional to be considered
in the adaptation action. With regard to the utility of disk read/write, there is
no divergence above the moving average (utility indifference curve) so it is not
considered in the subsequent adaptation action. The docker network shows no
changes over time as the load balancer and the reverse proxy manage to divert
the traffic to many containers distributed in the cluster. As the U(CPU) has
the highest value of changes, this triggers an adaptation action and it allows the
model to reason about the high demand of CPU usage. As a consequence, the



A Self Healing Microservices Architecture 855

Fig. 3. Utility(cpu) rate of changes and cost calculated based in Eqs. 3 and 4

adaptation manager creates additional nodes and add them to the swarm cluster
automatically. The number of nodes is equal to the utility calculated as in Eq. 2.
This lead to new nodes addition to the swarm as shown in the snapshot8 (a full
visualised and analytics dashboard of the swarm after the adaptation). Once the
CPU demand is reduced, the adaptation manager calculates the variations of
the utility and remove a number of nodes equal to the value returned by the
cost function of Eq. 3. A snapshot9 of the system after executing the adapta-
tion action to reason about the low level of the CPU usage. This satisfies the
evaluation criteria 2.

The accuracy of the utility cost, rate of changes, and the maximum utility
dimension are vital for the success of the adaptation process. So, Fig. 3 depicts
the calculation of the rate of changes and the utility cost to reach the desired
number of nodes/replicas needed. The calculation accurately satisfies the adapta-
tion objectives and provides the architecture with a suitable number of required
nodes/replicas. As shown in Fig. 3, this number increases at the right time when
the CPU demand spikes. In fact, the number of nodes/replicas reduces just
before the CPU demand declines significantly. The rate of changes in CPU usage

8 https://snapshot.raintank.io/dashboard/snapshot/sstuT2tuYkob8zjIbh1YXzBYxS
JDFd9z?orgId=2.

9 https://snapshot.raintank.io/dashboard/snapshot/UJlrTzwubrRQjDwM1YFJle5zv
dK3Anr7?orgId=2.

https://snapshot.raintank.io/dashboard/snapshot/sstuT2tuYkob8zjIbh1YXzBYxSJDFd9z?orgId=2
https://snapshot.raintank.io/dashboard/snapshot/sstuT2tuYkob8zjIbh1YXzBYxSJDFd9z?orgId=2
https://snapshot.raintank.io/dashboard/snapshot/UJlrTzwubrRQjDwM1YFJle5zvdK3Anr7?orgId=2
https://snapshot.raintank.io/dashboard/snapshot/UJlrTzwubrRQjDwM1YFJle5zvdK3Anr7?orgId=2


856 B. Magableh and M. Almiani

declined so the utility function returns a negative value for the required number
of nodes/replicas as long they are above the minimum amount specified by the
Dev-Ops. Also, as shown in Fig. 3 the utility cost normalizes and tunes the CPU
demand. This provides evidence that the adoption of the utility provides the
adaptation cycle with a dynamic variability over the needed/allocated resources
rather than scaling the architecture in/out according to a static threshold. This
satisfies the evaluation criteria 3.

In another scenario, a Distributed Denial of Service attack to a web service
running in the swarm was simulated. This was aimed at verifying that the adap-
tation manager can accommodate the DDOS attack by adding more replicas to
the service. As in the proposed model, if the anomaly detection service would
consider a specific record as anomalous and this was an actual anomaly, then
this attempt is classified as a True Positive. If the anomaly detection service
consider the data as normal behaviour, and it is actually normal data, then this
attempt is classified as True Negative. If it classifies an anomalous behaviour
as normal behaviour, then it means that NUPIC fails to detect the anomaly and
this attempt is classified as False Negative. Eventually, if the service classifies
the data as anomalous behaviour but the data actually corresponds to a nor-
mal behaviour, then this attempt is considered a False Positive (false alarm).
Both True Positive and False Positive are important benchmarks to measure the
accuracy of the intrusion detection mechanism. Table 1 summarizes the confu-
sion matrix emerged during our experiment and it provides a better pictures of
the accuracy of the anomaly detection algorithm. The confusion matrix will be
used to calculate the model detection rate, false positive, and accuracy, which
achieves the second objective of the evaluation (criterion 3).

Table 1. Results of the proposed anomalies detection model on confusion matrix

X = 1528 Predicted anomalies Predicted normality

Actual anomalies (TP + FN) (55) TP = 49 FN = 6

Actual normalies (FP + TN) (1473) FP/ False Alarm = 38 TN = 1435

The true positive rate (TPR), sensitivity or recall is 49/(49 + 6) = 89%, the
false positive rate (FPR) is 38/1473 = 2.5%, the false negative rate (FNR) is
6/(49 + 6) = 11% and the true negative rate (TNR), specificity or selectivity
is 1435/1473 = 97.5%. The precision (PPV) of the algorithm is 49/(49 + 38)
= 56.3% while its false omission rate (FOR) is 6/6 + 1435 = 4.4%. The false
discovery rate (FDR) is 38/49 + 38 = 43.7% while its negative predicted value
(NPV) is 1435/6 + 1435 = 99.5%. Thus the overall accuracy of the algorithm is
(49 + 1435)/(49 + 38 + 6 + 1435) = 97.1%. Since the actual tests is unbalanced,
having more normalies than anomalies, then the balanced accuracy is computed:
(0.89 + 0.975)/2 = 93.25%. Overall, the model has a low precision score (PPV)
and an high recall score (TPR). This means that the model has a moderate
degree of exactness but a high completeness.



A Self Healing Microservices Architecture 857

4 Conclusions and Future Work

This model manages to offer the Microservices architecture with continuous mon-
itoring, continuous detection of anomalous behaviour, and provides the archi-
tecture with dynamic decision making based on the employment of multidimen-
sional utility-based model. The results in above, shows high accuracy in detecting
the anomaly and an accurate calculation of variant adaptation actions. It Also
shows high success rate in performing horizontal and vertical scaling in response
to contextual changes. The uses of utility-based model enables the architecture
to dynamically elect a reasoning approach based on the highest utility dimension
of context changes in the operational environment.

References

1. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detec-
tion for streaming data. Neurocomputing 262(Suppl. C), 134–147 (2017)

2. Anderson, D., Frivold, T., Valdes, A.: Next-generation intrusion detection expert
system (NIDES): a summary. SRI International, Computer Science Laboratory
Menio Park, CA (1995)

3. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–
1176 (2016)

4. Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Malek, R.M., Müller,
H., Park, S., Shaw, M., Tichy, M.: Software engineering for self-adaptive systems: a
research road map (draft version). In: Dagstuhl Seminar Proceedings 08031 (2008)

5. Cheng, S.W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the rainbow
self-adaptive system. In: ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2009, pp. 132–141. IEEE (2009)

6. Cheung-Foo-Wo, D., Tigli, J.Y., Lavirotte, S., Riveill, M.: Self-adaptation of event-
driven component-oriented middleware using aspects of assembly. In: Proceedings
of the 5th International Workshop on Middleware for Pervasive and Ad-Hoc Com-
puting: Held at the ACM/IFIP/USENIX 8th International Middleware Confer-
ence, pp. 31–36 (2007)

7. Craig, J.W.: A new, simple and exact result for calculating the probability of error
for two-dimensional signal constellations. In: Conference Record, Military Commu-
nications in a Changing World, Military Communications Conference, MILCOM
1991, pp. 571–575. IEEE (1991)

8. De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M.,
Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T., et al.: Software engineering
for self-adaptive systems: a second research roadmap. In: Software Engineering for
Self-Adaptive Systems II, pp. 1–32. Springer (2013)

9. Fishburn, P.C., Kochenberger, G.A.: Two-piece von Neumann-Morgenstern utility
functions. Decis. Sci. 10(4), 503–518 (1979)

10. Golmah, V.: An efficient hybrid intrusion detection system based on C5.0 and
SVM. Int. J. Database Theory Appl. 7(2), 59–70 (2014)

11. Haq, N.F., Onik, A.R., Hridoy, M.A.K., Rafni, M., Shah, F.M., Farid, D.M.: Appli-
cation of machine learning approaches in intrusion detection system: a survey.
IJARAI-Int. J. Adv. Res. Artif. Intell. 4(3), 9–18 (2015)



858 B. Magableh and M. Almiani

12. Hawkins, J., Blakeslee, S.: On Intelligence. Macmillan, London (2007)
13. Hirschfeld, R., Costanza, P., Nierstrasz, O.M.: Context-oriented programming. J.

Object Technol. 7(3), 125–151 (2008)
14. Horn, P.: Autonomic computing: IBM’s perspective on the state of information

technology. Technical report (2001)
15. Kakousis, K., Paspallis, N., Papadopoulos, G.A.: Optimizing the utility function-

based self-adaptive behavior of context-aware systems using user feedback. In:
OTM Confederated International Conferences “On the Move to Meaningful Inter-
net Systems”, pp. 657–674. Springer (2008)

16. Kohavi, R., Provost, F.: Confusion matrix. Mach. Learn. 30(2–3), 271–274 (1998)
17. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms–the

Numenta anomaly benchmark. In: 2015 IEEE 14th International Conference on
Machine Learning and Applications, ICMLA, pp. 38–44. IEEE (2015)

18. Mikalsen, M., Paspallis, N., Floch, J., Stav, E., Papadopoulos, G.A., Chimaris, A.:
Distributed context management in a mobility and adaptation enabling middleware
(MADAM). In: Proceedings of the 2006 ACM Symposium on Applied Computing,
pp. 733–734. ACM (2006)

19. Mishra, A., Nadkarni, K., Patcha, A.: Intrusion detection in wireless ad hoc net-
works. IEEE Wirel. Commun. 11(1), 48–60 (2004)

20. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algorithm.
In: USENIX Annual Technical Conference, pp. 305–319 (2014)

21. Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive survey of data mining-
based fraud detection research. arXiv preprint arXiv:1009.6119 (2010)

22. Roesch, M., et al.: Snort: lightweight intrusion detection for networks. In: LISA,
vol. 99, pp. 229–238 (1999)

23. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. Trans. Auton. Adapt. Syst. (TAAS) 4(2), 14 (2009)

24. Sama, M., Rosenblum, D.S., Wang, Z., Elbaum, S.: Model-based fault detection in
context-aware adaptive applications. In: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pp. 261–271.
ACM (2008)

25. Sterritt, R., Bustard, D.: Towards an autonomic computing environment. In: Pro-
ceedings of the 14th International Workshop on Database and Expert Systems
Applications, pp. 694–698. IEEE (2003)

26. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on
Advanced Context Modelling, Reasoning and Management, UbiComp, vol. 4, pp.
34–41 (2004)

27. Stubbs, J., Moreira, W., Dooley, R.: Distributed systems of microservices using
docker and serfnode. In: 2015 7th International Workshop on Science Gateways,
IWSG, pp. 34–39. IEEE (2015)

28. Wei, W., Fan, X., Song, H., Fan, X., Yang, J.: Imperfect information dynamic
stackelberg game based resource allocation using hidden Markov for cloud com-
puting. IEEE Trans. Serv. Comput. 11(1), 78–89 (2016)

View publication statsView publication stats

http://arxiv.org/abs/1009.6119
https://www.researchgate.net/publication/331790124

	A Self Healing Microservices Architecture: A Case Study in Docker Swarm Cluster
	A Self Healing Microservices Architecture: A Case Study in Docker Swarm Cluster
	1 Introduction
	2 Related Work
	3 Design and Methodology
	3.1 Self-healing Microservices Architecture
	3.2 Adaptation Election
	3.3 Experimental Setup and Evaluation Strategy
	3.4 Discussion

	4 Conclusions and Future Work
	References


