50,118 research outputs found

    Probing the gluon self-interaction in light mesons

    Full text link
    We investigate masses and decay constants of light mesons from a coupled system of Dyson--Schwinger and Bethe--Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho-meson.Comment: 4 pages, 5 figures. Matches published version in PR

    Probing Unquenching Effects in the Gluon Polarisation in Light Mesons

    Full text link
    We introduce an extension to the ladder truncated Bethe-Salpeter equation for mesons and the rainbow truncated quark Dyson-Schwinger equations which includes quark-loop corrections to the gluon propagator. This truncation scheme obeys the axialvector Ward-Takahashi identity relating the quark self-energy and the Bethe-Salpeter kernel. Two different approximations to the Yang-Mills sector are used as input: the first is a sophisticated truncation of the full Yang-Mills Dyson-Schwinger equations, the second is a phenomenologically motivated form. We find that the spectra and decay constants of pseudoscalar and vector mesons are overall described well for either approach. Meson mass results for charge eigenstate vector and pseudoscalar meson masses are compared to lattice data. The effects of unquenching the system are small but not negligible.Comment: 26 pages, 13 figure

    VR/Urban: spread.gun - design process and challenges in developing a shared encounter for media façades

    Get PDF
    Designing novel interaction concepts for urban environments is not only a technical challenge in terms of scale, safety, portability and deployment, but also a challenge of designing for social configurations and spatial settings. To outline what it takes to create a consistent and interactive experience in urban space, we describe the concept and multidisciplinary design process of VR/Urban's media intervention tool called Spread.gun, which was created for the Media Façade Festival 2008 in Berlin. Main design aims were the anticipation of urban space, situational system configuration and embodied interaction. This case study also reflects on the specific technical, organizational and infrastructural challenges encountered when developing media façade installations

    The nonrelativistic limit of Dirac-Fock codes: the role of Brillouin configurations

    Get PDF
    We solve a long standing problem with relativistic calculations done with the widely used Multi-Configuration Dirac-Fock Method (MCDF). We show, using Relativistic Many-Body Perturbation Theory (RMBPT), how even for relatively high-ZZ, relaxation or correlation causes the non-relativistic limit of states of different total angular momentum but identical orbital angular momentum to have different energies. We show that only large scale calculations that include all single excitations, even those obeying the Brillouin's theorem have the correct limit. We reproduce very accurately recent high-precision measurements in F-like Ar, and turn then into precise test of QED. We obtain the correct non-relativistic limit not only for fine structure but also for level energies and show that RMBPT calculations are not immune to this problem.Comment: AUgust 9th, 2004 Second version Nov. 18th, 200

    Exchange interaction and correlations radically change behaviour of a quantum particle in a classically forbidden region

    Full text link
    Exchange interaction strongly influences the long-range behaviour of localised electron orbitals and quantum tunneling amplitudes. It violates the oscillation theorem (creates extra nodes) and produces a power-law decay instead of the usual exponential decrease at large distances. For inner orbitals inside molecules decay is r2r^{-2}, for macroscopic systems cos(kfr)rν\cos{(k_f r)} r^{-\nu}, where kfk_f is the Fermi momentum and ν=3\nu=3 for 1D, ν=\nu=3.5 for 2D and ν=\nu=4 for 3D crystal. Correlation corrections do not change these conclusions. Slow decay increases the exchange interaction between localized spins and the under-barrier tunneling amplitude. The under-barrier transmission coefficients in solids (e.g. for point contacts) become temperature-dependent

    VR/Urban: SMSlingshot

    Get PDF
    In this paper we describe the concept and design objectives of VR/Urban's media intervention tool SMSlingshot, which was presented at the Riga White Night Arts Festival 2009 for the first time

    Rayleigh-Benard Convection with a Radial Ramp in Plate Separation

    Get PDF
    Pattern formation in Rayleigh-Benard convection in a large-aspect-ratio cylinder with a radial ramp in the plate separation is studied analytically and numerically by performing numerical simulations of the Boussinesq equations. A horizontal mean flow and a vertical large scale counterflow are quantified and used to understand the pattern wavenumber. Our results suggest that the mean flow, generated by amplitude gradients, plays an important role in the roll compression observed as the control parameter is increased. Near threshold the mean flow has a quadrupole dependence with a single vortex in each quadrant while away from threshold the mean flow exhibits an octupole dependence with a counter-rotating pair of vortices in each quadrant. This is confirmed analytically using the amplitude equation and Cross-Newell mean flow equation. By performing numerical experiments the large scale counterflow is also found to aid in the roll compression away from threshold but to a much lesser degree. Our results yield an understanding of the pattern wavenumbers observed in experiment away from threshold and suggest that near threshold the mean flow and large scale counterflow are not responsible for the observed shift to smaller than critical wavenumbers.Comment: 10 pages, 13 figure

    Analytic structure of the Landau gauge gluon propagator

    Full text link
    The results of different non-perturbative studies agree on a power law as the infrared behavior of the Landau gauge gluon propagator. This propagator violates positivity and thus indicates the absence of the transverse gluons from the physical spectrum, i.e. gluon confinement. A simple analytic structure for the gluon propagator is proposed capturing all of its features. We comment also on related investigations for the Landau gauge quark propagator.Comment: 4 pages, 2 figures, talk given by R.A. at 6th Conference on Quark Confinement and the Hadron Spectrum, Villasimius, Sardinia, Italy, 21-25 Sep 200

    Enhanced tracer transport by the spiral defect chaos state of a convecting fluid

    Get PDF
    To understand how spatiotemporal chaos may modify material transport, we use direct numerical simulations of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity follows two regimes. For large Peclet numbers (that is, small molecular diffusivities of the tracer), we find that the enhancement is proportional to the Peclet number. For small Peclet numbers, the enhancement is proportional to the square root of the Peclet number. We explain the presence of these two regimes in terms of how the local transport depends on the local wave numbers of the convection rolls. For large Peclet numbers, we further find that defects cause the tracer diffusivity to be enhanced locally in the direction orthogonal to the local wave vector but suppressed in the direction of the local wave vector.Comment: 11 pages, 12 figure

    Sampling motif-constrained ensembles of networks

    Full text link
    The statistical significance of network properties is conditioned on null models which satisfy spec- ified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency, or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this paper we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, net- works with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.Comment: Updated version, as published in the journal. 7 pages, 5 figures, one Supplemental Materia
    corecore