773 research outputs found

    Growth, Condition, and Trophic Relations of Stocked Trout in Southern Appalachian Mountain Streams

    Get PDF
    Stream trout fisheries are among the most popular and valuable in the United States, but many are dependent on hatcheries to sustain fishing and harvest. Thus, understanding the ecology of hatchery‐reared trout stocked in natural environments is fundamental to management. We evaluated the growth, condition, and trophic relations of Brook Trout Salvelinus fontinalis, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss that were stocked in southern Appalachian Mountain streams in western North Carolina. Stocked and wild (naturalized) trout were sampled over time (monthly; September 2012–June 2013) to compare condition and diet composition and to evaluate temporal dynamics of trophic position with stable isotope analysis. Relative weights (Wr) of stocked trout were inversely associated with their stream residence time but were consistently higher than those of wild trout. Weight loss of harvested stocked trout was similar among species and sizes, but fish stocked earlier lost more weight. Overall, 40% of 141 stomachs from stocked trout were empty compared to 15% of wild trout stomachs (N = 26). We identified a much higher rate of piscivory in wild trout (18 times that of stocked trout), and wild trout were 4.3 times more likely to consume gastropods relative to stocked trout. Hatchery‐reared trout were isotopically similar to co‐occurring wild fish for both ή13C and ή15N values but were less variable than wild trout. Differences in sulfur isotope ratios (ή34S) between wild and hatchery‐reared trout indicated that the diets of wild fish were enriched in ή34S relative to the diets of hatchery‐reared fish. Although hatcheryreared trout consumed prey items similar to those of wild fish, differences in consumption or behavior (e.g., reduced feeding) may have resulted in lower condition and negative growth. These findings provide critical insight on the trophic dynamics of stocked trout and may assist in developing and enhancing stream trout fisheries

    Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging

    Get PDF
    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research

    Copper Chaperone for Cu/Zn Superoxide Dismutase is a sensitive biomarker of mild copper deficiency induced by moderately high intakes of zinc

    Get PDF
    BACKGROUND: Small increases in zinc (Zn) consumption above recommended amounts have been shown to reduce copper (Cu) status in experimental animals and humans. Recently, we have reported that copper chaperone for Cu/Zn superoxide dismutase (CCS) protein level is increased in tissues of overtly Cu-deficient rats and proposed CCS as a novel biomarker of Cu status. METHODS: Weanling male Wistar rats were fed one of four diets normal in Cu and containing normal (30 mg Zn/kg diet) or moderately high (60, 120 or 240 mg Zn/kg diet) amounts of Zn for 5 weeks. To begin to examine the clinical relevance of CCS, we compared the sensitivity of CCS to mild Cu deficiency, induced by moderately high intakes of Zn, with conventional indices of Cu status. RESULTS: Liver and erythrocyte CCS expression was significantly (P < 0.05) increased in rats fed the Zn-60 and/or Zn-120 diet compared to rats fed normal levels of Zn (Zn-30). Erythrocyte CCS expression was the most sensitive measure of reduced Cu status and was able to detect a decrease in Cu nutriture in rats fed only twice the recommended amount of Zn. Liver, erythrocyte and white blood cell CCS expression showed a significant (P < 0.05) inverse correlation with plasma and liver Cu concentrations and caeruloplasmin activity. Unexpectedly, rats fed the highest level of Zn (Zn-240) showed overall better Cu status than rats fed a lower level of elevated Zn (Zn-120). Improved Cu status in these rats correlated with increased duodenal mRNA expression of several Zn-trafficking proteins (i.e. MT-1, ZnT-1, ZnT-2 and ZnT-4). CONCLUSION: Collectively, these data show that CCS is a sensitive measure of Zn-induced mild Cu deficiency and demonstrate a dose-dependent biphasic response for reduced Cu status by moderately high intakes of Zn

    Myogenin Regulates Exercise Capacity and Skeletal Muscle Metabolism in the Adult Mouse

    Get PDF
    Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were analyzed for exercise capacity by involuntary treadmill running. To assess oxidative and glycolytic metabolism, we performed indirect calorimetry, monitored blood glucose and lactate levels, and performed histochemical analyses on muscle fibers. Surprisingly, we found that Myog-deleted mice performed significantly better than controls in high- and low-intensity treadmill running. This enhanced exercise capacity was due to more efficient oxidative metabolism during low- and high-intensity exercise and more efficient glycolytic metabolism during high-intensity exercise. Furthermore, Myog-deleted mice had an enhanced response to long-term voluntary exercise training on running wheels. We identified several candidate genes whose expression was altered in exercise-stressed muscle of mice lacking myogenin. The results suggest that myogenin plays a critical role as a high-level transcriptional regulator to control the energy balance between aerobic and anaerobic metabolism in adult skeletal muscle

    CD4 T Cell Immunity Is Critical for the Control of Simian Varicella Virus Infection in a Nonhuman Primate Model of VZV Infection

    Get PDF
    Primary infection with varicella zoster virus (VZV) results in varicella (more commonly known as chickenpox) after which VZV establishes latency in sensory ganglia. VZV can reactivate to cause herpes zoster (shingles), a debilitating disease that affects one million individuals in the US alone annually. Current vaccines against varicella (Varivax) and herpes zoster (Zostavax) are not 100% efficacious. Specifically, studies have shown that 1 dose of varivax can lead to breakthrough varicella, albeit rarely, in children and a 2-dose regimen is now recommended. Similarly, although Zostavax results in a 50% reduction in HZ cases, a significant number of recipients remain at risk. To design more efficacious vaccines, we need a better understanding of the immune response to VZV. Clinical observations suggest that T cell immunity plays a more critical role in the protection against VZV primary infection and reactivation. However, no studies to date have directly tested this hypothesis due to the scarcity of animal models that recapitulate the immune response to VZV. We have recently shown that SVV infection of rhesus macaques models the hallmarks of primary VZV infection in children. In this study, we used this model to experimentally determine the role of CD4, CD8 and B cell responses in the resolution of primary SVV infection in unvaccinated animals. Data presented in this manuscript show that while CD20 depletion leads to a significant delay and decrease in the antibody response to SVV, loss of B cells does not alter the severity of varicella or the kinetics/magnitude of the T cell response. Loss of CD8 T cells resulted in slightly higher viral loads and prolonged viremia. In contrast, CD4 depletion led to higher viral loads, prolonged viremia and disseminated varicella. CD4 depleted animals also had delayed and reduced antibody and CD8 T cell responses. These results are similar to clinical observations that children with agammaglobulinemia have uncomplicated varicella whereas children with T cell deficiencies are at increased risk of progressive varicella with significant complications. Moreover, our studies indicate that CD4 T cell responses to SVV play a more critical role than antibody or CD8 T cell responses in the control of primary SVV infection and suggest that one potential mechanism for enhancing the efficacy of VZV vaccines is by eliciting robust CD4 T cell responses

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016

    Get PDF
    The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
    • 

    corecore