12 research outputs found

    Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma

    Get PDF
    Burkitt lymphoma is a fast-growing tumor derived from germinal center B cells. It is mainly treated with aggressive chemotherapy, therefore novel therapeutic approaches are needed due to treatment toxicity and developing resistance. Disturbance of red-ox homeostasis has recently emerged as an efficient antitumor strategy. Peroxiredoxins (PRDXs) are thioredoxin-family antioxidant enzymes that scavenge cellular peroxides and contribute to red-ox homeostasis. PRDXs are robustly expressed in various malignancies and critically involved in cell proliferation, differentiation and apoptosis. To elucidate potential role of PRDXs in lymphoma, we studied their expression level in B cell-derived primary lymphoma cells as well as in cell lines. We found that PRDX1 and PRDX2 are upregulated in tumor B cells as compared with normal counterparts. Concomitant knockdown of PRDX1 and PRDX2 significantly attenuated the growth rate of lymphoma cells. Furthermore, in human Burkitt lymphoma cell lines, we isolated dimeric 2-cysteine peroxiredoxins as targets for SK053, a novel thiol-specific small-molecule peptidomimetic with antitumor activity. We observed that treatment of lymphoma cells with SK053 triggers formation of covalent PRDX dimers, accumulation of intracellular reactive oxygen species, phosphorylation of ERK1/2 and AKT and leads to cell cycle arrest and apoptosis. Based on site-directed mutagenesis and modeling studies, we propose a mechanism of SK053-mediated PRDX crosslinking, involving double thioalkylation of active site cysteine residues. Altogether, our results suggest that peroxiredoxins are novel therapeutic targets in Burkitt lymphoma and provide the basis for new approaches to the treatment of this disease

    Inhibition of protein disulfide isomerase induces differentiation of acute myeloid leukemia cells

    Get PDF
    Acute myeloid leukemia is a malignant disease of immature myeloid cells. Despite significant therapeutic effects of differentiation-inducing agents in some acute myeloid leukemia subtypes, the disease remains incurable in a large fraction of patients. Here we show that SK053, a thioredoxin inhibitor, induces differentiation and cell death of acute myeloid leukemia cells. Considering that thioredoxin knock-down with short hairpin RNA failed to exert antiproliferative effects in one of the acute myeloid leukemia cell lines, we used a biotin affinity probe-labeling approach to identify potential molecular targets for the effects of SK053. Mass spectrometry of proteins precipitated from acute myeloid leukemia cells incubated with biotinylated SK053 used as a bait revealed protein disulfide isomerase as a potential binding partner for the compound. Biochemical, enzymatic and functional assays using fluorescence lifetime imaging confirmed that SK053 binds to and inhibits the activity of protein disulfide isomerase. Protein disulfide isomerase knockdown with short hairpin RNA was associated with inhibition of cell growth, increased CCAAT enhancer-binding protein 伪 levels, and induction of differentiation of HL-60 cells. Molecular dynamics simulation followed by the covalent docking indicated that SK053 binds to the fourth thioredoxin-like domain of protein disulfide isomerase. Differentiation of myeloid precursor cells requires the activity of CCAAT enhancer-binding protein 伪, the function of which is impaired in acute myeloid leukemia cells through various mechanisms, including translational block by protein disulfide isomerase. SK053 increased the levels of CCAAT enhancer-binding protein 伪 and upregulated mRNA levels for differentiation-associated genes. Finally, SK053 decreased the survival of blasts and increased the percentage of cells expressing the maturation-associated CD11b marker in primary cells isolated from bone marrow or peripheral blood of patients with acute myeloid leukemia. Collectively, these results provide a proof-of-concept that protein disulfide isomerase inhibition has potential as a therapeutic strategy for the treatment of acute myeloid leukemia and for the development of small-molecule inhibitors of protein disulfide isomerase

    Old and new targets for immunotherapy of B cell acute lymphoblastic leukemia

    Get PDF
    B cell-specific antigens such as CD20 and CD19 are the leading examples of clinically utilized targets for cancer immunotherapy. Rituximab, the anti-CD20 monoclonal antibody (mAb) approved for the treatment of B cell lymphoma in 1997, was the earliest mAb drug ever registered in cancer immunotherapy. The clinical success of chimeric antigen receptor (CAR)-modified T cells has been demonstrated in patients with B cell acute lymphoblastic leukemia (B-ALL), and CD19-directed CAR-T cells were the first CAR therapy ever approved to treat cancer patients. While surface antigen-targeting immunotherapies play a significant role in the therapy of B-ALL, in particular in the treatment of relapsed and refractory patients, they have some limitations and face continuous challenges. Herein, I review the types of antigen-specific immunotherapies that are used in the treatment of B-ALL, including naked mAbs, antibody-drug conjugates, B cell-specific T cell engagers, and CAR-modified T cells. I discuss the requirements for good immunotherapy targets and summarize the main methods used to identify novel putative targets. I present an overview of B cell-specific and non-B cell-specific target antigens, both already used in clinics and tested in preclinical models. I also discuss limitations of current B-ALL immunotherapy, attempts to overcome these limitations, and future directions of immunotherapy research

    Mutational analysis of peptidoglycan amidase MepA.

    No full text
    Murein endopeptidase A (MepA) from Escherichia coli is a periplasmic peptidoglycan amidase that cleaves d,d amide bonds between d-alanine and meso-2,6-diaminopimelic acid in E. coli peptidoglycan. MepA and its homologues in other proteobacteria share overall structural similarity with d-Ala-d-Ala metallopeptidases and local similarity around the active site with lysostaphin-type enzymes, which has prompted the classification of these enzymes as LAS enzymes. LAS enzymes contain a single divalent cation in the active site, which is tetracoordinated in the crystal structures. Three of the metal ligands are identical in all structures, but the identity of the fourth ligand varies. Two residues in proximity to the metal might act as a general acid/base, but their role is not clear. Here, we report a new MepA expression system, which allows the separation of MepA variants from the endogenous wild-type enzyme, and an HPLC assay with a defined peptidoglycan fragment, which allows assessment of MepA activity without a refolding step. We find that the conserved metal ligands are required for folding (D120) or catalysis (H113, H211). Separate mutations of the candidate catalytic residues H206 or H209 and of the 'fourth' metal ligand H110 are tolerated for folding but drastically reduce activity. Mutation of residue W203 to aspartate impairs substrate binding

    Studies toward Novel Peptidomimetic Inhibitors of Thioredoxin鈥揟hioredoxin Reductase System

    No full text
    Thioredoxins (Trx) are ubiquitous multifunctional low-molecular weight proteins that together with thioredoxin reductases (TrxR) participate in the maintenance of protein thiol homeostasis in NADPH-dependent reactions. An increasing number of data reveal that the Trx鈥揟rxR system is an attractive target for anticancer therapies. In this work, we have elaborated a new and simple synthetic approach employing Ugi reaction to synthesize several new inhibitors of this system. The influence of various electrophilic fragments of this new class of compounds on the inhibition of the Trx鈥揟rxR system was evaluated. As a result, a new compound <b>19a</b> (SK053), which inhibits the activity of the Trx鈥揟rxR system and exhibits antitumor activity, was obtained. Biologic analyses revealed that <b>19a</b> inhibits induction of NF-魏B and AP-1 and decreases H<sub>2</sub>O<sub>2</sub> scavenging capacity in tumor cells. Altogether, we show that <b>19a</b> is a novel potential antitumor peptidomimetic inhibitor that can be used as a starting compound for further optimization

    Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer

    No full text
    Aminolevulinic acid (ALA) is an endogenous metabolite normally formed in the mitochondria from succinyl-CoA and glycine. Conjugation of eight ALA molecules yields protoporphyrin IX (PpIX) and finally leads to formation of heme. Conversion of PpIX to its downstream substrates requires the activity of a rate-limiting enzyme ferrochelatase. When ALA is administered externally the abundantly produced PpIX cannot be quickly converted to its final product - heme by ferrochelatase and therefore accumulates within cells. Since PpIX is a potent photosensitizer this metabolic pathway can be exploited in photodynamic therapy (PDT). This is an already approved therapeutic strategy making ALA one of the most successful prodrugs used in cancer treatment

    Statins Impair Glucose Uptake in Tumor Cells1

    Get PDF
    Statins, HMG-CoA reductase inhibitors, are used in the prevention and treatment of cardiovascular diseases owing to their lipid-lowering effects. Previous studies revealed that, by modulating membrane cholesterol content, statins could induce conformational changes in cluster of differentiation 20 (CD20) tetraspanin. The aim of the presented study was to investigate the influence of statins on glucose transporter 1 (GLUT1)-mediated glucose uptake in tumor cells. We observed a significant concentration- and time-dependent decrease in glucose analogs' uptake in several tumor cell lines incubated with statins. This effect was reversible with restitution of cholesterol synthesis pathway with mevalonic acid as well as with supplementation of plasma membrane with exogenous cholesterol. Statins did not change overall GLUT1 expression at either transcriptional or protein levels. An exploratory clinical trial revealed that statin treatment decreased glucose uptake in peripheral blood leukocytes and lowered 18F-fluorodeoxyglucose (18F-FDG) uptake by tumor masses in a mantle cell lymphoma patient. A bioinformatics analysis was used to predict the structure of human GLUT1 and to identify putative cholesterol-binding motifs in its juxtamembrane fragment. Altogether, the influence of statins on glucose uptake seems to be of clinical significance. By inhibiting 18F-FDG uptake, statins can negatively affect the sensitivity of positron emission tomography, a diagnostic procedure frequently used in oncology

    Serine biosynthesis pathway supports MYC-miR-494-EZH2 feed-forward circuit necessary to maintain metabolic and epigenetic reprogramming of burkitt lymphoma cells

    Get PDF
    Burkitt lymphoma (BL) is a rapidly growing tumor, characterized by high anabolic requirements. The MYC oncogene plays a central role in the pathogenesis of this malignancy, controlling genes involved in apoptosis, proliferation, and cellular metabolism. Serine biosynthesis pathway (SBP) couples glycolysis to folate and methionine cycles, supporting biosynthesis of certain amino acids, nucleotides, glutathione, and a methyl group donor, S-adenosylmethionine (SAM). We report that BLs overexpress SBP enzymes, phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1). Both genes are controlled by the MYC-dependent ATF4 transcription factor. Genetic ablation of PHGDH/PSAT1 or chemical PHGDH inhibition with NCT-503 decreased BL cell lines proliferation and clonogenicity. NCT-503 reduced glutathione level, increased reactive oxygen species abundance, and induced apoptosis. Consistent with the role of SAM as a methyl donor, NCT-503 decreased DNA and histone methylation, and led to the re-expression of ID4, KLF4, CDKN2B and TXNIP tumor suppressors. High H3K27me3 level is known to repress the MYC negative regulator miR-494. NCT-503 decreased H3K27me3 abundance, increased the miR-494 level, and reduced the expression of MYC and MYC-dependent histone methyltransferase, EZH2. Surprisingly, chemical/genetic disruption of SBP did not delay BL and breast cancer xenografts growth, suggesting the existence of mechanisms compensating the PHGDH/PSAT1 absence in vivo
    corecore