95 research outputs found

    Apoptosis in Gingival Overgrowth Tissues

    Get PDF
    Variations in the balance between cell proliferation and apoptosis could contribute to the etiology of gingival overgrowth. The aim of this study was to test the hypothesis that, in fibrotic gingival lesions, fibroblast proliferation is stimulated and apoptosis is decreased. Apoptotic index, caspase 3 expression, the proliferative index, FOXO1 expression, and histological inflammation were measured in situ. Analysis of data showed that apoptosis decreased in all forms of gingival overgrowth examined (p \u3c 0.05), and inflammation caused a small but significant increase compared with non-inflamed tissues (p \u3c 0.05). The greatest decrease of apoptosis occurred in the most fibrotic tissues. Cell proliferation was elevated in all forms of gingival overgrowth tested, independent of inflammation (p \u3c 0.05). To identify potential mechanisms of transcriptional regulation of apoptosis, we assessed FOXO1 and caspase 3 expression levels and found them to correlate well with diminished apoptosis. Analysis of data suggests that increased fibroblast proliferation and a simultaneous decrease in apoptosis contribute to gingival overgrowth

    Last Men Standing: Chlamydatus Portraits and Public Life in Late Antique Corinth

    Get PDF
    Notable among the marble sculptures excavated at Corinth are seven portraits of men wearing the long chlamys of Late Antique imperial office. This unusual costume, contemporary portrait heads, and inscribed statue bases all help confirm that new public statuary was created and erected at Corinth during the 4th and 5th centuries. These chlamydatus portraits, published together here for the first time, are likely to represent the Governor of Achaia in his capital city, in the company of local benefactors. Among the last works of the ancient sculptural tradition, they form a valuable source of information on public life in Late Antique Corinth

    Gut microbiota and diabetes: from pathogenesis to therapeutic perspective

    Get PDF
    More than several hundreds of millions of people will be diabetic and obese over the next decades in front of which the actual therapeutic approaches aim at treating the consequences rather than causes of the impaired metabolism. This strategy is not efficient and new paradigms should be found. The wide analysis of the genome cannot predict or explain more than 10–20% of the disease, whereas changes in feeding and social behavior have certainly a major impact. However, the molecular mechanisms linking environmental factors and genetic susceptibility were so far not envisioned until the recent discovery of a hidden source of genomic diversity, i.e., the metagenome. More than 3 million genes from several hundreds of species constitute our intestinal microbiome. First key experiments have demonstrated that this biome can by itself transfer metabolic disease. The mechanisms are unknown but could be involved in the modulation of energy harvesting capacity by the host as well as the low-grade inflammation and the corresponding immune response on adipose tissue plasticity, hepatic steatosis, insulin resistance and even the secondary cardiovascular events. Secreted bacterial factors reach the circulating blood, and even full bacteria from intestinal microbiota can reach tissues where inflammation is triggered. The last 5 years have demonstrated that intestinal microbiota, at its molecular level, is a causal factor early in the development of the diseases. Nonetheless, much more need to be uncovered in order to identify first, new predictive biomarkers so that preventive strategies based on pre- and probiotics, and second, new therapeutic strategies against the cause rather than the consequence of hyperglycemia and body weight gain
    corecore