10 research outputs found

    Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells.</p> <p>Methods</p> <p>HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IÎșBα and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot.</p> <p>Results</p> <p>PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, <it>per se </it>does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IÎșBα levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as <it>caspase </it>and <it>bcl </it>family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was detected only in SiHa cells treated with ADR.</p> <p>Conclusion</p> <p>PTX is a good inducer of apoptosis but does not induce senescence. Furthermore, PTX reduced the ADR-induced senescence and increased apoptosis in cervix cancer cells.</p

    Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes

    Get PDF
    postprin

    On the sensitivity of the HAWC observatory to gamma-ray bursts

    Full text link
    We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn could help to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles

    Sensitivity of HAWC to high-mass dark matter annihilations

    No full text
    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19° North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from nonluminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross sections below thermal. HAWC should also be sensitive to nonthermal cross sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained. © 2014 American Physical Society

    Search for dark matter gamma-ray emission from the Andromeda Galaxy with the High-Altitude Water Cherenkov Observatory

    No full text

    A search for dark matter in the Galactic halo with HAWC

    No full text

    Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes

    No full text

    VAMOS: A pathfinder for the HAWC gamma-ray observatory

    No full text

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore