369 research outputs found

    Arbuscular Mycorrhizal Symbiosis Limits Foliar Transcriptional Responses to Viral Infection and Favors Long-Term Virus Accumulation

    Get PDF
    Tomato (Solanum lycopersicum) can establish symbiotic interactions with arbuscular mycorrhizal (AM) fungi, and can be infected by several pathogenic viruses. Here, we investigated the impact of mycorrhization by the fungus Glomus mosseae on the Tomato spotted wilt virus (TSWV) infection of tomato plants by transcriptomic and hormones level analyses. In TSWV-infected mycorrhizal plants, the AM fungus root colonization limited virus-induced changes in gene expression in the aerial parts. The virus-responsive upregulated genes, no longer induced in infected mycorrhizal plants, were mainly involved in defense responses and hormone signaling, while the virus-responsive downregulated genes, no longer repressed in mycorrhizal plants, were involved in primary metabolism. The presence of the AM fungus limits, in a salicylic acid-independent manner, the accumulation of abscissic acid observed in response to viral infection. At the time of the molecular analysis, no differences in virus concentration or symptom severity were detected between mycorrhizal and nonmycorrhizal plants. However, in a longer period, increase in virus titer and delay in the appearance of recovery were observed in mycorrhizal plants, thus indicating that the plant's reaction to TSWV infection is attenuated by mycorrhization. </jats:p

    Editorial: Interactions of Plants With Bacteria and Fungi: Molecular and Epigenetic Plasticity of the Host

    Get PDF
    Editorial on the Research Topic 'Interactions of Plants with Bacteria and Fungi: Molecular and Epigenetic Plasticity of the Host

    Achievements in Mesoporous Bioactive Glasses for Biomedical Applications

    Get PDF
    Nowadays, mesoporous bioactive glasses (MBGs) are envisaged as promising candidates in the field of bioceramics for bone tissue regeneration. This is ascribed to their singular chemical composition, structural and textural properties and easy-to-functionalize surface, giving rise to accelerated bioactive responses and capacity for local drug delivery. Since their discovery at the beginning of the 21st century, pioneering research efforts focused on the design and fabrication of MBGs with optimal compositional, textural and structural properties to elicit superior bioactive behavior. The current trends conceive MBGs as multitherapy systems for the treatment of bone-related pathologies, emphasizing the need of fine-tuning surface functionalization. Herein, we focus on the recent developments in MBGs for biomedical applications. First, the role of MBGs in the design and fabrication of three-dimensional scaffolds that fulfil the highly demanding requirements for bone tissue engineering is outlined. The different approaches for developing multifunctional MBGs are overviewed, including the incorporation of therapeutic ions in the glass composition and the surface functionalization with zwitterionic moieties to prevent bacterial adhesion. The bourgeoning scientific literature on MBGs as local delivery systems of diverse therapeutic cargoes (osteogenic/antiosteoporotic, angiogenic, antibacterial, anti-inflammatory and antitumor agents) is addressed. Finally, the current challenges and future directions for the clinical translation of MBGs are discussed

    Polyelectrolyte-coated mesoporous bioactive glasses via layer-by-layer deposition for sustained co-delivery of therapeutic ions and drugs

    Get PDF
    In the field of bone regeneration, considerable attention has been addressed towards the use of mesoporous bioactive glasses (MBGs), as multifunctional therapeutic platforms for advanced medical devices. In fact, their extremely high exposed surface area and pore volume allow to load and the release of several drugs, while their framework can be enriched with specific therapeutic ions allowing to boost the tissue regeneration. However, due to the open and easily accessible mesopore structure of MBG, the release of the incorporated therapeutic molecules shows an initial burst effect leading to unsuitable release kinetics. Hence, a still open challenge in the design of drug delivery systems based on MBGs is the control of their release behavior. In this work, Layer-by-layer (LbL) deposition of polyelectrolyte multi-layers was exploited as a powerful and versatile technique for coating the surface of Cu-substituted MBG nanoparticles with innovative multifunctional drug delivery systems for co-releasing of therapeutic copper ions (exerting pro-angiogenic and anti-bacterial effects) and an anti-inflammatory drug (ibuprofen). Two different routes were investigated: in the first strategy, chitosan and alginate were assembled by forming the multi-layered surface, and, successively, ibuprofen was loaded by incipient wetness impregnation, while in the second approach, alginate was replaced by ibuprofen, introduced as polyelectrolyte layer. Zeta-potential, TGA and FT-IR spectroscopy were measured after the addition of each polyelectrolyte layer, confirming the occurrence of the stepwise deposition. In addition, the in vitro bioactivity and the ability to modulate the release of the cargo were evaluated. The polyelectrolyte coated-MBGs were proved to retain the peculiar ability to induce hydroxyapatite formation after 7 days of soaking in Simulated Body Fluid. Both copper ions and ibuprofen were co-released over time, showing a sustained release profile up to 14 days and 24 h, respectively, with a significantly lower burst release compared to the bare MBG particles

    Hydrothermally-assisted recovery of Yttria- stabilized zirconia (YSZ) from end-of-life solid oxide cells

    Get PDF
    Effective and scalable recycling strategies for the recovery of critical raw materials are yet to be validated for solid oxide cells (SOCs) technologies. The current study aimed at filling this gap by developing optimized recycling processes for the recovery of Yttria-stabilized Zirconia (YSZ) from End-of-Life (EoL) SOC components, in view of using the recovered ceramic phase in cell re-manufacturing. A multi-step procedure, including milling, hydrothermal treatment (HT), and acidic-assisted leaching of nickel from composite Ni-YSZ materials, has been implemented to obtain recovered YSZ powders with defined specifications, in terms of particle size distribution, specific surface area, and chemical purity. The overall optimized procedure includes a pre-milling step (6 h) of the EoL composite materials, and a hydrothermal (HT) treatment at 200 °C for 4 h to further disaggregate the sintered composite, followed by selective oxidative leaching of Ni2+ by HNO3 solution at 80 °C for 2 h. In particular, the intermediate HT step was assessed to play an essential role in promoting the disaggregation of the sintered powders, with a related increase of specific surface area (up to 13 m2 g−1) and the overall reduction of the primary particle aggregates. The acid-assisted leaching allowed to fully extract Nickel from the composite Ni-YSZ powders, with retention of YSZ crystallinity and negligible loss of Zr and Y, as revealed by ICP analysis on the recovered supernatants. The developed multi-step pathway offers a promising strategy to recover valuable YSZ materials for the re-manufacturing of SOCs components, with the aim to boost a circular economy approach in the field of fuel-cell and hydrogen (FCH) technologies

    New methodological approach to induce a differentiation phenotype in Caco-2 cells prior to post-confluence stage

    Get PDF
    BACKGROUND: Various differentiation-inducing agents or harvesting of spontaneously late post-confluence cultures have been used to differentiate the human colon carcinoma Caco-2 cell line. We report a new procedure to generate pre-confluent subcultures of Caco-2 population at various stages of differentiation without altering culture conditions. MATERIALS AND METHODS: Ultrastructural analysis, cell proliferation activity and biochemical markers of differentiation were evaluated at different passages. RESULTS: Subcultures of Caco-2 cells at pre-confluence, exhibiting progressive acquisition of a more benign differentiation phenotype, were generated. Early passages of Caco-2 cells showed a well-developed brush border and incomplete junctional apparatus; subsequent subcultures yielded cell populations with well-developed junctions similar to those of small intestinal cells. CONCLUSION: These culture conditions represent a new versatile model not only to progressively induce the differentiation program in Caco-2 cells at pre-confluence without changes of culture media, but also to explore mechanistic modes of drug transport and tumor development

    Adapted physical activity in subjects and athletes recovering from covid-19: a position statement of the Società Italiana Scienze Motorie e Sportive

    Get PDF
    Coronavirus disease 2019 (COVID-19) is a worldwide pandemic illness that is impacting the cardiovascular, pulmonary, musculoskeletal, and cognitive function of a large spectrum of the worldwide population. The available pharmacological countermeasures of these long-term effects of COVID-19 are minimal, while myriads of non-specific non-pharmacological treatments are emerging in the literature. In this complicated scenario, particular emphasis should be dedicated to specific exercise interventions tailored for subjects and athletes recovering from COVID-19. Specific guidelines on adapted physical activity in this critical population are unavailable so far, therefore, in this position statement of the Società Italiana di Scienze Motorie e Sportive (SISMeS) the members of the steering committee of the research group Attività Motoria Adattata, Alimentazione, Salute e Fitness have indicated the adapted physical activity approaches to counteract the long-term effects of the COVID-19, both in good health people and athletes
    • …
    corecore