18 research outputs found

    Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium

    Get PDF
    The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care

    Bacterial Cyclic Diguanylate Signaling Networks Sense Temperature

    Get PDF
    Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria

    Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: A tool for identifying differentially regulated genes

    No full text
    Pseudomonas aeruginosa is a major cause of nosocomial (hospital-derived) infections, is the predominant pathogen in chronic cystic fibrosis lung infections, and remains difficult to treat due to its high intrinsic antibiotic resistance. The completion of the P. aeruginosa PAO1 genome sequence provides the opportunity for genome-wide studies to increase our understanding of the pathogenesis and biology of this important pathogen. In this report, we describe the construction of a mini-Tn5-luxCDABE mutant library and a high-throughput inverse PCR method to amplify DNA flanking the site of insertion for sequencing and insertion site mapping. In addition to producing polar knockout mutations in nonessential genes, the promoterless luxCDABE reporter present in the transposon serves as a real-time reporter of gene expression for the inactivated gene. A total of 2519 transposon insertion sites were mapped, 77% of which were nonredundant insertions. Of the insertions within an ORF, -55% of total and unique insertion sites were transcriptional luxCDABE fusions. A bias toward low insertion-site density in the genome region that surrounds the predicted terminus of replication was observed. To demonstrate the utility of chromosomal lux fusions, we performed extensive regulatory screens to identify genes that were differentially regulated under magnesium or phosphate limitation. This approach led to the discovery of many known and novel genes necessary for these environmental adaptations, including genes involved in resistance to cationic antimicrobial peptides. This dual-purpose mutant library allows for functional and regulation studies and will serve as a resource for the research community to further our understanding of P. aeruginosa biology

    PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria

    No full text
    Automated prediction of bacterial protein subcellular localization is an important tool for genome annotation and drug discovery. PSORT has been one of the most widely used computational methods for such bacterial protein analysis; however, it has not been updated since it was introduced in 1991. In addition, neither PSORT nor any of the other computational methods available make predictions for all five of the localization sites characteristic of Gram-negative bacteria. Here we present PSORT-B, an updated version of PSORT for Gram-negative bacteria, which is available as a web-based application at http://www.psort.org. PSORT-B examines a given protein sequence for amino acid composition, similarity to proteins of known localization, presence of a signal peptide, transmembrane alpha-helices and motifs corresponding to specific localizations. A probabilistic method integrates these analyses, returning a list of five possible localization sites with associated probability scores. PSORT-B, designed to favor high precision (specificity) over high recall (sensitivity), attained an overall precision of 97% and recall of 75% in 5-fold cross-validation tests, using a dataset we developed of 1443 proteins of experimentally known localization. This dataset, the largest of its kind, is freely available, along with the PSORT-B source code (under GNU General Public License)

    Supplemental material for: Characterization of Legionella from watersheds in British Columbia, Canada

    No full text
    Supplemental material for the paper: Characterization of Legionella from watersheds in British Columbia, Canada. Contains Tables S1-S3 and Figures S1-S3

    Effective adjunctive therapy by an innate defense regulatory peptide in a preclinical model of severe malaria

    No full text
    Case fatality rates for severe malaria remain high even in the best clinical settings because antimalarial drugs act against the parasite without alleviating life-threatening inflammation. We assessed the potential for host-directed therapy of severe malaria of a new class of anti-inflammatory drugs, the innate defense regulator (IDR) peptides, based on host defense peptides. The Plasmodium berghei ANKA model of experimental cerebral malaria was adapted to use as a preclinical screen by combining late-stage intervention in established infections with advanced bioinformatic analysis of early transcriptional changes in co-regulated gene sets. Coadministration of IDR-1018 with standard first-line antimalarials increased survival of infected mice while down-regulating key inflammatory networks associated with fatality. Thus, IDR peptides provided host-directed adjunctive therapy for severe disease in combination with antimalarial treatment
    corecore