15 research outputs found

    Correlation of Nav1.8 and Nav1.9 sodium channel expression with neuropathic pain in human subjects with lingual nerve neuromas

    Get PDF
    Background: Voltage-gated sodium channels Nav1.8 and Nav1.9 are expressed preferentially in small diameter sensory neurons, and are thought to play a role in the generation of ectopic activity in neuronal cell bodies and/or their axons following peripheral nerve injury. The expression of Nav1.8 and Nav1.9 has been quantified in human lingual nerves that have been previously injured inadvertently during lower third molar removal, and any correlation between the expression of these ion channels and the presence or absence of dysaesthesia investigated. Results: Immunohistochemical processing and quantitative image analysis revealed that Nav1.8 and Nav1.9 were expressed in human lingual nerve neuromas from patients with or without symptoms of dysaesthesia. The level of Nav1.8 expression was significantly higher in patients reporting pain compared with no pain, and a significant positive correlation was observed between levels of Nav1.8 expression and VAS scores for the symptom of tingling. No significant differences were recorded in the level of expression of Nav1.9 between patients with or without pain. Conclusions: These results demonstrate that Nav1.8 and Nav1.9 are present in human lingual nerve neuromas, with significant correlations between the level of expression of Nav1.8 and symptoms of pain. These data provide further evidence that changes in expression of Nav1.8 are important in the development and/or maintenance of nerve injury-induced pain, and suggest that Nav1.8 may be a potential therapeutic target

    Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair

    Get PDF
    The peripheral nervous system has a limited innate capacity for self-repair following injury, and surgical intervention is often required. For injuries greater than a few millimeters autografting is standard practice although it is associated with donor site morbidity and is limited in its availability. Because of this, nerve guidance conduits (NGCs) can be viewed as an advantageous alternative, but currently have limited efficacy for short and large injury gaps in comparison to autograft. Current commercially available NGC designs rely on existing regulatory approved materials and traditional production methods, limiting improvement of their design. The aim of this study was to establish a novel method for NGC manufacture using a custom built laser-based microstereolithography (μSL) setup that incorporated a 405 nm laser source to produce 3D constructs with ∼50 μm resolution from a photocurable poly(ethylene glycol) resin. These were evaluated by SEM, in vitro neuronal, Schwann and dorsal root ganglion culture and in vivo using a thy-1-YFP-H mouse common fibular nerve injury model. NGCs with dimensions of 1 mm internal diameter × 5 mm length with a wall thickness of 250 μm were fabricated and capable of supporting re-innervation across a 3 mm injury gap after 21 days, with results close to that of an autograft control. The study provides a technology platform for the rapid microfabrication of biocompatible materials, a novel method for in vivo evaluation, and a benchmark for future development in more advanced NGC designs, biodegradable and larger device sizes, and longer-term implantation studies

    Immunocytochemical investigation of neurovascular relationships in human tooth pulp

    No full text
    This study sought to explore the anatomical relationships between peptidergic nerves and blood vessels within human primary and permanent teeth. Extracted primary and permanent molars (n = 120) were split longitudinally, placed in Zamboni's fixative and the coronal pulps were processed for indirect immunofluorescence. Ten-micrometre-thick serial frozen pulp sections were triple-labelled using combinations of the following antisera: (1) protein gene-product 9.5 (PGP 9.5), a general neuronal marker; (2) one of the neuropeptides, calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal polypeptide (VIP) or neuropeptide Y (NPY); and (iii) the lectin Ulex europeus, a label for vascular endothelium. The mid-coronal pulp region was examined, using fluorescence microscopy, to determine the proportion of blood vessels showing a positive innervation (recorded when PGP 9.5-labelled nerves appeared to intersect the vessel wall). In addition, the percentage of these vascular-related nerves expressing each of the above neuropeptides was recorded. Overall, 20% of pulpal blood vessels appeared to have a positive innervation. In the main these were thick-walled arterioles. Capillaries, venules and lymphatics were mostly devoid of an associated innervation. Ninety-two per cent of vascular-related nerves expressed CGRP, 87% expressed SP, 15% expressed VIP and 80% expressed NPY. There were no significant differences in overall innervation or peptide-related innervation between primary and permanent teeth (P < 0.05, anova, indicating that pulpal blood flow is likely to be subject to similar neurological control mechanisms in both dentitions

    A Tuneable, Photocurable, Poly(Caprolactone)-Based Resin for Tissue Engineering—Synthesis, Characterisation and Use in Stereolithography

    No full text
    Stereolithography is a useful additive manufacturing technique for the production of scaffolds for tissue engineering. Here we present a tuneable, easy-to-manufacture, photocurable resin for use in stereolithography, based on the widely used biomaterial, poly(caprolactone) (PCL). PCL triol was methacrylated to varying degrees and mixed with photoinitiator to produce a photocurable prepolymer resin, which cured under UV light to produce a cytocompatible material. This study demonstrates that poly(caprolactone) methacrylate (PCLMA) can be produced with a range of mechanical properties and degradation rates. By increasing the degree of methacrylation (DM) of the prepolymer, the Young’s modulus of the crosslinked PCLMA could be varied from 0.12–3.51 MPa. The accelerated degradation rate was also reduced from complete degradation in 17 days to non-significant degradation in 21 days. The additive manufacturing capabilities of the resin were demonstrated by the production of a variety of different 3D structures using micro-stereolithography. Here, β-carotene was used as a novel, cytocompatible photoabsorber and enabled the production of complex geometries by giving control over cure depth. The PCLMA presented here offers an attractive, tuneable biomaterial for the production of tissue engineering scaffolds for a wide range of applications
    corecore