923 research outputs found

    Deterministic hierarchical networks

    Get PDF
    It has been shown that many networks associated with complex systems are small-world (they have both a large local clustering coefficient and a small diameter) and they are also scale-free (the degrees are distributed according to a power law). Moreover, these networks are very often hierarchical, as they describe the modularity of the systems that are modeled. Most of the studies for complex networks are based on stochastic methods. However, a deterministic method, with an exact determination of the main relevant parameters of the networks, has proven useful. Indeed, this approach complements and enhances the probabilistic and simulation techniques and, therefore, it provides a better understanding of the systems modeled. In this paper we find the radius, diameter, clustering coefficient and degree distribution of a generic family of deterministic hierarchical small-world scale-free networks that has been considered for modeling real-life complex systems

    Semiclassical description of the kinematically complete experiments

    Full text link
    Based on the semiclassical, impact parameter method a theoretical model is constructed to calculate totally differential cross sections for single ionization of helium by impact with fast C6+^{6+} ions. Good agreement with the experiment is achieved in the scattering plane, while in the perpendicular plane a similar structure to that observed experimentally is obtained. The contribution of different partial waves to the cross section is also investigated.Comment: 9 pages, 6 figure

    La reflexión especular y la simetría

    Get PDF
    Para aprovechar el interés del niño ante el mundo que le rodea, debemos estimularlo intelectualmente. En función del desarrollo intelectual del niño, se puede introducir la física a lo largo de las diferentes edades de la EGB. En esta propuesta se relaciona la física con las matemáticas en la primera etapa de EGB. Se incluye, a modo de ejemplo, el tema de la reflexión con espejos planos y la simetría axial

    A deformation of AdS_5 x S^5

    Full text link
    We analyse a one parameter family of supersymmetric solutions of type IIB supergravity that includes AdS_5 x S^5. For small values of the parameter the solutions are causally well-behaved, but beyond a critical value closed timelike curves (CTC's) appear. The solutions are holographically dual to N=4 supersymmetric Yang-Mills theory on a non-conformally flat background with non-vanishing R-currents. We compute the holographic energy-momentum tensor for the spacetime and show that it remains finite even when the CTC's appear. The solutions, as well as the uplift of some recently discovered AdS_5 black hole solutions, are shown to preserve precisely two supersymmetries.Comment: 16 pages, v2: typos corrected and references adde

    Flavor from M5-branes

    Full text link
    We study various aspects of the defect conformal field theory that arises when placing a single M5-brane probe in AdS_4 x S^7. We derive the full set of fluctuation modes and dimensions of the corresponding dual operators. We argue that the latter does not depend on the presence of a non-trivial magnetic flux on the M5-brane world-volume. Finally we give a mass to the hypermultiplet living on the defect, and compute the resulting mesonic spectrum.Comment: 19 page

    Populating the swampland: the case of U(1)^496 and E_8 x U(1)^248

    Full text link
    For d=10 N=1 SUGRA coupled to d=10 N=1 SYM, anomaly cancellation places severe constraints on the allowed gauge groups. Besides the ones known to appear in string theory, only U(1)^496 and E_8 x U(1)^248 are allowed. There are no known theories of quantum gravity that reduce in some limit to these two last supergravity theories, and in this note I present some evidence that those quantum theories might not exist. The first observation is that, upon compactification, requring that the quantum theory possesses a moduli space with finite volume typically implies the existence of singularities where the 4d gauge group is enhanced, but for these two theories that gauge enhancement is problematic from the 10d point of view. I also point out that while these four supergravity theories present repulson-type singularities, the known mechanism that repairs those singularities for the first two - the non-Abelian enhancon - is not available for the last two theories. In short, these two supergravity theories might be too Abelian for their own good.Comment: 12 page

    Supertube domain-walls and elimination of closed time-like curves in string theory

    Full text link
    We show that some novel physics of supertubes removes closed time-like curves from many supersymmetric spaces which naively suffer from this problem. The main claim is that supertubes naturally form domain-walls, so while analytical continuation of the metric would lead to closed time-like curves, across the domain-wall the metric is non-differentiable, and the closed time-like curves are eliminated. In the examples we study the metric inside the domain-wall is always of the G\"odel type, while outside the shell it looks like a localized rotating object, often a rotating black hole. Thus this mechanism prevents the appearance of closed time-like curves behind the horizons of certain rotating black holes.Comment: 22 pages, JHEP3 class. V2: Some corrections and clariffications, references added. V3: more corrections to formulas, results unchanged. V4: minor typos, as published in PR

    Extremal non-BPS black holes and entropy extremization

    Full text link
    At the horizon, a static extremal black hole solution in N=2 supergravity in four dimensions is determined by a set of so-called attractor equations which, in the absence of higher-curvature interactions, can be derived as extremization conditions for the black hole potential or, equivalently, for the entropy function. We contrast both methods by explicitly solving the attractor equations for a one-modulus prepotential associated with the conifold. We find that near the conifold point, the non-supersymmetric solution has a substantially different behavior than the supersymmetric solution. We analyze the stability of the solutions and the extrema of the resulting entropy as a function of the modulus. For the non-BPS solution the region of attractivity and the maximum of the entropy do not coincide with the conifold point.Comment: 19 pages, 4 figures, AMS-LaTeX, reference adde

    Measures for a Transdimensional Multiverse

    Full text link
    The multiverse/landscape paradigm that has emerged from eternal inflation and string theory, describes a large-scale multiverse populated by "pocket universes" which come in a huge variety of different types, including different dimensionalities. In order to make predictions in the multiverse, we need a probability measure. In (3+1)d(3+1)d landscapes, the scale factor cutoff measure has been previously shown to have a number of attractive properties. Here we consider possible generalizations of this measure to a transdimensional multiverse. We find that a straightforward extension of scale factor cutoff to the transdimensional case gives a measure that strongly disfavors large amounts of slow-roll inflation and predicts low values for the density parameter Ω\Omega, in conflict with observations. A suitable generalization, which retains all the good properties of the original measure, is the "volume factor" cutoff, which regularizes the infinite spacetime volume using cutoff surfaces of constant volume expansion factor.Comment: 30 pages, 1 figure Minor revisions, reference adde
    corecore