923 research outputs found
Deterministic hierarchical networks
It has been shown that many networks associated with complex systems are
small-world (they have both a large local clustering coefficient and a small
diameter) and they are also scale-free (the degrees are distributed according
to a power law). Moreover, these networks are very often hierarchical, as they
describe the modularity of the systems that are modeled. Most of the studies
for complex networks are based on stochastic methods. However, a deterministic
method, with an exact determination of the main relevant parameters of the
networks, has proven useful. Indeed, this approach complements and enhances the
probabilistic and simulation techniques and, therefore, it provides a better
understanding of the systems modeled. In this paper we find the radius,
diameter, clustering coefficient and degree distribution of a generic family of
deterministic hierarchical small-world scale-free networks that has been
considered for modeling real-life complex systems
Semiclassical description of the kinematically complete experiments
Based on the semiclassical, impact parameter method a theoretical model is
constructed to calculate totally differential cross sections for single
ionization of helium by impact with fast C ions. Good agreement with the
experiment is achieved in the scattering plane, while in the perpendicular
plane a similar structure to that observed experimentally is obtained. The
contribution of different partial waves to the cross section is also
investigated.Comment: 9 pages, 6 figure
La reflexión especular y la simetría
Para aprovechar el interés del niño ante el mundo que le rodea, debemos estimularlo intelectualmente. En función del desarrollo intelectual del niño, se puede introducir la física a lo largo de las diferentes edades de la EGB. En esta propuesta se relaciona la física con las matemáticas en la primera etapa de EGB. Se incluye, a modo de ejemplo, el tema de la reflexión con espejos planos y la simetría axial
A deformation of AdS_5 x S^5
We analyse a one parameter family of supersymmetric solutions of type IIB
supergravity that includes AdS_5 x S^5. For small values of the parameter the
solutions are causally well-behaved, but beyond a critical value closed
timelike curves (CTC's) appear. The solutions are holographically dual to N=4
supersymmetric Yang-Mills theory on a non-conformally flat background with
non-vanishing R-currents. We compute the holographic energy-momentum tensor for
the spacetime and show that it remains finite even when the CTC's appear. The
solutions, as well as the uplift of some recently discovered AdS_5 black hole
solutions, are shown to preserve precisely two supersymmetries.Comment: 16 pages, v2: typos corrected and references adde
Flavor from M5-branes
We study various aspects of the defect conformal field theory that arises
when placing a single M5-brane probe in AdS_4 x S^7. We derive the full set of
fluctuation modes and dimensions of the corresponding dual operators. We argue
that the latter does not depend on the presence of a non-trivial magnetic flux
on the M5-brane world-volume. Finally we give a mass to the hypermultiplet
living on the defect, and compute the resulting mesonic spectrum.Comment: 19 page
Populating the swampland: the case of U(1)^496 and E_8 x U(1)^248
For d=10 N=1 SUGRA coupled to d=10 N=1 SYM, anomaly cancellation places
severe constraints on the allowed gauge groups. Besides the ones known to
appear in string theory, only U(1)^496 and E_8 x U(1)^248 are allowed. There
are no known theories of quantum gravity that reduce in some limit to these two
last supergravity theories, and in this note I present some evidence that those
quantum theories might not exist. The first observation is that, upon
compactification, requring that the quantum theory possesses a moduli space
with finite volume typically implies the existence of singularities where the
4d gauge group is enhanced, but for these two theories that gauge enhancement
is problematic from the 10d point of view. I also point out that while these
four supergravity theories present repulson-type singularities, the known
mechanism that repairs those singularities for the first two - the non-Abelian
enhancon - is not available for the last two theories. In short, these two
supergravity theories might be too Abelian for their own good.Comment: 12 page
Supertube domain-walls and elimination of closed time-like curves in string theory
We show that some novel physics of supertubes removes closed time-like curves
from many supersymmetric spaces which naively suffer from this problem. The
main claim is that supertubes naturally form domain-walls, so while analytical
continuation of the metric would lead to closed time-like curves, across the
domain-wall the metric is non-differentiable, and the closed time-like curves
are eliminated. In the examples we study the metric inside the domain-wall is
always of the G\"odel type, while outside the shell it looks like a localized
rotating object, often a rotating black hole. Thus this mechanism prevents the
appearance of closed time-like curves behind the horizons of certain rotating
black holes.Comment: 22 pages, JHEP3 class. V2: Some corrections and clariffications,
references added. V3: more corrections to formulas, results unchanged. V4:
minor typos, as published in PR
Extremal non-BPS black holes and entropy extremization
At the horizon, a static extremal black hole solution in N=2 supergravity in
four dimensions is determined by a set of so-called attractor equations which,
in the absence of higher-curvature interactions, can be derived as
extremization conditions for the black hole potential or, equivalently, for the
entropy function. We contrast both methods by explicitly solving the attractor
equations for a one-modulus prepotential associated with the conifold. We find
that near the conifold point, the non-supersymmetric solution has a
substantially different behavior than the supersymmetric solution. We analyze
the stability of the solutions and the extrema of the resulting entropy as a
function of the modulus. For the non-BPS solution the region of attractivity
and the maximum of the entropy do not coincide with the conifold point.Comment: 19 pages, 4 figures, AMS-LaTeX, reference adde
Measures for a Transdimensional Multiverse
The multiverse/landscape paradigm that has emerged from eternal inflation and
string theory, describes a large-scale multiverse populated by "pocket
universes" which come in a huge variety of different types, including different
dimensionalities. In order to make predictions in the multiverse, we need a
probability measure. In landscapes, the scale factor cutoff measure
has been previously shown to have a number of attractive properties. Here we
consider possible generalizations of this measure to a transdimensional
multiverse. We find that a straightforward extension of scale factor cutoff to
the transdimensional case gives a measure that strongly disfavors large amounts
of slow-roll inflation and predicts low values for the density parameter
, in conflict with observations. A suitable generalization, which
retains all the good properties of the original measure, is the "volume factor"
cutoff, which regularizes the infinite spacetime volume using cutoff surfaces
of constant volume expansion factor.Comment: 30 pages, 1 figure Minor revisions, reference adde
- …