175 research outputs found

    PHASES High Precision Differential Astrometry of delta Equulei

    Full text link
    delta Equulei is among the most well-studied nearby binary star systems. Results of its observation have been applied to a wide range of fundamental studies of binary systems and stellar astrophysics. It is widely used to calibrate and constrain theoretical models of the physics of stars. We report 27 high precision differential astrometry measurements of delta Equulei from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES). The median size of the minor axes of the uncertainty ellipses for these measurements is 26 micro-arcseconds. These data are combined with previously published radial velocity data and other previously published differential astrometry measurements using other techniques to produce a combined model for the system orbit. The distance to the system is determined to within a twentieth of a parsec and the component masses are determined at the level of a percent. The constraints on masses and distance are limited by the precisions of the radial velocity data; we outline plans improve this deficiency and discuss the outlook for further study of this binary.Comment: Accepted by AJ. Complete versions of tables 2-7 now available at http://stuff.mit.edu/~matthew1/deltaEquTables/ (removed from astroph server

    Preparation and Structure of the Ion-Conducting Mixed Molecular Glass Ga2I3.17

    Get PDF
    Modern functional glasses have been prepared from a wide range of precursors, combining the benefits of their isotropic disordered structures with the innate functional behavior of their atomic or molecular building blocks. The enhanced ionic conductivity of glasses compared to their crystalline counterparts has attracted considerable interest for their use in solid-state batteries. In this study, we have prepared the mixed molecular glass Ga2I3.17 and investigated the correlations between the local structure, thermal properties, and ionic conductivity. The novel glass displays a glass transition at 60 °C, and its molecular make-up consists of GaI4– tetrahedra, Ga2I62– heteroethane ions, and Ga+ cations. Neutron diffraction was employed to characterize the local structure and coordination geometries within the glass. Raman spectroscopy revealed a strongly localized nonmolecular mode in glassy Ga2I3.17, coinciding with the observation of two relaxation mechanisms below Tg in the AC admittance spectra

    No effect of ablation of surfactant protein-D on acute cerebral infarction in mice

    Get PDF
    BACKGROUND: Crosstalk between the immune system in the brain and the periphery may contribute to the long-term outcome both in experimental and clinical stroke. Although, the immune defense collectin surfactant protein-D (SP-D) is best known for its role in pulmonary innate immunity, SP-D is also known to be involved in extrapulmonary modulation of inflammation in mice. We investigated whether SP-D affected cerebral ischemic infarction and ischemia-induced inflammatory responses in mice. METHODS: The effect of SP-D was studied by comparing the size of ischemic infarction and the inflammatory and astroglial responses in SP-D knock out (KO) and wild type (WT) mice subjected to permanent middle cerebral artery occlusion. SP-D mRNA production was assessed in isolated cerebral arteries and in the whole brain by PCR, and SP-D protein in normal appearing and ischemic human brain by immunohistochemistry. Changes in plasma SP-D and TNF were assessed by ELISA and proximity ligation assay, respectively. RESULTS: Infarct volumetric analysis showed that ablation of SP-D had no effect on ischemic infarction one and five days after induction of ischemia. Further, ablation of SP-D had no effect on the ischemia-induced increase in TNF mRNA production one day after induction of ischemia; however the TNF response to the ischemic insult was affected at five days. SP-D mRNA was not detected in parenchymal brain cells in either naïve mice or in mice subjected to focal cerebral ischemia. However, SP-D mRNA was detected in middle cerebral artery cells in WT mice and SP-D protein in vascular cells both in normal appearing and ischemic human brain tissue. Measurements of the levels of SP-D and TNF in plasma in mice suggested that levels were unaffected by the ischemic insult. Microglial-leukocyte and astroglial responses were comparable in SP-D KO and WT mice. CONCLUSIONS: SP-D synthesis in middle cerebral artery cells is consistent with SP-D conceivably leaking into the infarcted area and affecting local cytokine production. However, there was no SP-D synthesis in parenchymal brain cells and ablation of SP-D had no effect on ischemic cerebral infarction

    TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex

    Get PDF
    •TNF deficiency alters the spatial organization of neurogenic zones.•TNF deficiency decreases WNT signaling-related proteins.•TNF deficiency alters neuronal and microglial numbers.•Long-term use of non-selective TNF inhibitors impairs learning and memory.•Long-term use of the soluble TNF selective inhibitor XPro1595 does not affect neurogenesis, learning and memory. Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF−/−) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF−/− mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF−/− mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment

    Are osteoporotic fractures being adequately investigated?: A questionnaire of GP & orthopaedic surgeons

    Get PDF
    BACKGROUND: To investigate the current practice of Orthopaedic Surgeons & General Practitioners (GP) when presented with patients who have a fracture, with possible underlying Osteoporosis. METHODS: Questionnaires were sent to 140 GPs and 140 Orthopaedic Surgeons. The participants were asked their routine clinical practice with regard to investigation of underlying osteoporosis in 3 clinical scenarios. 55 year old lady with a low trauma Colles fracture 60 year old lady with a vertebral wedge fracture 70 year old lady with a low trauma neck of femur fracture. RESULTS: Most doctors agreed that patients over 50 years old with low trauma fractures required investigation for osteoporosis, however, most surgeons (56%, n = 66) would discharge patients with low trauma Colles fracture without requesting or initiating investigation for osteoporosis. Most GPs (67%, n = 76) would not investigate a similar patient for osteoporosis, unless prompted by the Orthopaedic Surgeon or patient. More surgeons (71%, n= 83) and GPs (64%, n = 72) would initiate investigations for osteoporosis in a vertebral wedge fracture, but few surgeons (35%, n = 23) would investigate a neck of femur fracture patient after orthopaedic treatment. CONCLUSION: Most doctors know that fragility fractures in patients over 50 years old require investigation for Osteoporosis; however, a large population of patients with osteoporotic fractures are not being given the advantages of secondary prevention

    Lack of Chemokine Signaling through CXCR5 Causes Increased Mortality, Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload

    Get PDF
    RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/-)) displayed increased mortality during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR5(-/-) developed significant left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR5(-/-) compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/-) mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly

    The prognosis for pain, disability, activities of daily living and quality of life after an acute osteoporotic vertebral body fracture: its relation to fracture level, type of fracture and grade of fracture deformation

    Get PDF
    The level of the acute osteoporotic vertebral fracture, fracture type and grade of fracture deformation were determined in 107 consecutive patients and related to pain, disability, activities of daily living (ADL) and quality of life (QoL) after 3 weeks, 3, 6 and 12 months. Two-thirds of the fractured patients were women and with a similar average age, around 75 years, as the men. Fifty-eight of the acute fractures were located in the thoracic spine and 49 in the lumbar spine and predominantly at the Th12 and L1 levels. Sixty-nine percent of the fractures were wedge, 19% concave and 12% crush fractures. There were 22 mildly, 50 moderately and 35 severely deformed vertebrae. The grade of fracture deformation was not related to gender, age or fracture location. Severely deformed vertebrae predominantly (92%) occurred among the crush fracture type. One year after the fracture, irrespective of fracture level, fracture type or grade of fracture deformation, 4/5 still had pronounced pain and deteriorated QoL. Initial severe fracture deformation by far was the worst prognostic factor for severe lasting pain and disability, and deterioration of ADL and QoL. Factors like fracture level, lumbar fractures tended to improve steadily while thoracic deteriorated, type of fracture, the wedge and concave resulting in less pain and better QoL than the crush fracture type and gender influenced to a lesser extent the outcomes during the year after the acute fracture

    Syndecan-4 Is Essential for Development of Concentric Myocardial Hypertrophy via Stretch-Induced Activation of the Calcineurin-NFAT Pathway

    Get PDF
    Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extracellular matrix proteins to the cytoskeleton, is an important signal transducer in cardiomyocytes during development of concentric myocardial hypertrophy following pressure overload. Echocardiographic, histochemical and cardiomyocyte size measurements showed that syndecan-4−/− mice did not develop concentric myocardial hypertrophy as found in wild-type mice, but rather left ventricular dilatation and dysfunction following pressure overload. Protein and gene expression analyses revealed diminished activation of the central, pro-hypertrophic calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway. Cardiomyocytes from syndecan-4−/−-NFAT-luciferase reporter mice subjected to cyclic mechanical stretch, a hypertrophic stimulus, showed minimal activation of NFAT (1.6-fold) compared to 5.8-fold increase in NFAT-luciferase control cardiomyocytes. Accordingly, overexpression of syndecan-4 or introducing a cell-permeable membrane-targeted syndecan-4 polypeptide (gain of function) activated NFATc4 in vitro. Pull-down experiments demonstrated a direct intracellular syndecan-4-calcineurin interaction. This interaction and activation of NFAT were increased by dephosphorylation of serine 179 (pS179) in syndecan-4. During pressure overload, phosphorylation of syndecan-4 was decreased, and association between syndecan-4, calcineurin and its co-activator calmodulin increased. Moreover, calcineurin dephosphorylated pS179, indicating that calcineurin regulates its own binding and activation. Finally, patients with hypertrophic myocardium due to aortic stenosis had increased syndecan-4 levels with decreased pS179 which was associated with increased NFAT activation. In conclusion, our data show that syndecan-4 is essential for compensatory hypertrophy in the pressure overloaded heart. Specifically, syndecan-4 regulates stretch-induced activation of the calcineurin-NFAT pathway in cardiomyocytes. Thus, our data suggest that manipulation of syndecan-4 may provide an option for therapeutic modulation of calcineurin-NFAT signaling

    No long-term impact of low-energy distal radius fracture on health-related quality of life and global quality of life: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changes in patient-reported outcomes like health related quality of life (HRQOL) and global quality of life (GQOL) in patients with low-energy distal radius fracture might be related to fracture, or be within the normal range of variation in an elderly population. Hence, the present study aims to examine: Whether patients with low-energy distal radius fracture attain their pre-fracture levels in HRQOL and GQOL one year after the fracture and compare these levels with age- and sex-matched controls; and whether objective factors predict changes in HRQOL and GQOL during the same one year period.</p> <p>Methods</p> <p>We examined 160 patients and 169 age- and sex matched controls, respectively (mean ± SD) 67 ± 9 and 66 ± 9 years of age. HRQOL was assessed by the Modified Health Assessment Questionnaire (MHAQ) and the Short–Form 36 (SF-36). The Quality of Life Scale (QOLS) assessed GQOL. Paired sample t-tests and multiple linear regression analyses were applied.</p> <p>Results</p> <p>After one year no differences were found in HRQOL (assessed as arm functions, physical health and mental health) compared to pre-fracture level in the patient group. Both patients with distal radius fracture and controls reported a reduced GQOL after one year (p < 0.001). Low-energy distal radius fracture did not predict worsened HRQOL or GQOL one year after inclusion, and few predictors of changes were identified. Worsened arm function was predicted by low BMI (B = -0.20, p = 0.019) at baseline, worsened physical health was predicted by low education (B = 1.37, p = 0.017) at baseline, and living with someone predicted worsened mental health (B = 2.85, p = 0.009)</p> <p>Conclusion</p> <p>Patients with a distal radius fracture seem to manage well despite the fracture, and distal radius fracture is not an independent predictor of worsened HRQOL and GQOL.</p

    Effects of an adapted physical activity program in a group of elderly subjects with flexed posture: clinical and instrumental assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flexed posture commonly increases with age and is related to musculoskeletal impairment and reduced physical performance. The purpose of this clinical study was to systematically compare the effects of a physical activity program that specifically address the flexed posture that marks a certain percentage of elderly individuals with a non specific exercise program for 3 months.</p> <p>Methods</p> <p>Participants were randomly divided into two groups: one followed an Adapted Physical Activity program for flexed posture and the other one completed a non-specific physical activity protocol for the elderly. A multidimensional clinical assessment was performed at baseline and at 3 months including anthropometric data, clinical profile, measures of musculoskeletal impairment and disability. The instrumental assessment of posture was realized using a stereophotogrammetric system and a specific biomechanical model designed to describe the reciprocal position of the body segments on the sagittal plane in a upright posture.</p> <p>Results</p> <p>The Adapted Physical Activity program determined a significant improvement in several key parameters of the multidimensional assessment in comparison to the non-specific protocol: decreased occiput-to-wall distance, greater lower limb range of motion, better flexibility of pectoralis, hamstrings and hip flexor muscles, increased spine extensor muscles strength. Stereophotogrammetric analysis confirmed a reduced protrusion of the head and revealed a reduction in compensative postural adaptations to flexed posture characterized by knee flexion and ankle dorsiflexion in the participants of the specific program.</p> <p>Conclusion</p> <p>The Adapted Physical Activity program for flexed posture significantly improved postural alignment and musculoskeletal impairment of the elderly. The stereophotogrammetric evaluation of posture was useful to measure the global postural alignment and especially to analyse the possible compensatory strategies at lower limbs in flexed posture.</p
    corecore