119 research outputs found

    Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era.

    Get PDF
    The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite-free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high-quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species

    Decoding the Equine Genome: Lessons from ENCODE

    Get PDF
    The horse reference genome assemblies, EquCab2.0 and EquCab3.0, have enabled great advancements in the equine genomics field, from tools to novel discoveries. However, significant gaps of knowledge regarding genome function remain, hindering the study of complex traits in horses. In an effort to address these gaps and with inspiration from the Encyclopedia of DNA Elements (ENCODE) project, the equine Functional Annotation of Animal Genome (FAANG) initiative was proposed to bridge the gap between genome and gene expression, providing further insights into functional regulation within the horse genome. Three years after launching the initiative, the equine FAANG group has generated data from more than 400 experiments using over 50 tissues, targeting a variety of regulatory features of the equine genome. In this review, we examine how valuable lessons learned from the ENCODE project informed our decisions in the equine FAANG project. We report the current state of the equine FAANG project and discuss how FAANG can serve as a template for future expansion of functional annotation in the equine genome and be used as a reference for studies of complex traits in horse. A well-annotated reference functional atlas will also help advance equine genetics in the pan-genome and precision medicine era

    Generation of an equine biobank to be used for Functional Annotation of Animal Genomes project

    Get PDF
    The Functional Annotation of Animal Genomes (FAANG) project aims to identify genomic regulatory elements in both sexes across multiple stages of development in domesticated animals. This study represents the first stage of the FAANG project for the horse, Equus caballus. A biobank of 80 tissue samples, two cell lines and six body fluids was created from two adult Thoroughbred mares. Ante-mortem assessments included full physical examinations, lameness, ophthalmologic and neurologic evaluations. Complete blood counts and serum biochemistries were also performed. At necropsy, in addition to tissue samples, aliquots of serum, ethylenediaminetetraacetic acid (EDTA) plasma, heparinized plasma, cerebrospinal fluid, synovial fluid, urine and microbiome samples from all regions of the gastrointestinal and urogenital tracts were collected. Epidermal keratinocytes and dermal fibroblasts were cultured from skin samples. All tissues were grossly and histologically evaluated by a board-certified veterinary pathologist. The results of the clinical and pathological evaluations identified subclinical eosinophilic and lymphocytic infiltration throughout the length of the gastrointestinal tract as well as a mild clinical lameness in both animals. Each sample was cryo-preserved in multiple ways, and nuclei were extracted from selected tissues. These samples represent the first published systemically healthy equine-specific biobank with extensive clinical phenotyping ante- and post-mortem. The tissues in the biobank are intended for community-wide use in the functional annotation of the equine genome. The use of the biobank will improve the quality of the reference annotation and allow all equine researchers to elucidate unknown genomic and epigenomic causes of disease

    Long-read RNA Sequencing Improves the Annotation of the Equine Transcriptome

    Get PDF
    A high-quality reference genome assembly, a biobank of diverse equine tissues from the Functional Annotation of the Animal Genome (FAANG) initiative, and incorporation of long-read sequencing technologies, have enabled efforts to build a comprehensive and tissue-specific equine transcriptome. The equine FAANG transcriptome reported here provides up to 45% improvement in transcriptome completeness across tissue types when compared to either RefSeq or Ensembl transcriptomes. This transcriptome also provides major improvements in the identification of alternatively spliced isoforms, novel noncoding genes, and 3’ transcription termination site (TTS) annotations. The equine FAANG transcriptome will empower future functional studies of important equine traits while providing future opportunities to identify allele-specific expression and differentially expressed genes across tissues

    Improved reference genome for the domestic horse increases assembly contiguity and composition

    Get PDF
    Recent advances in genomic sequencing technology and computational assembly methods have allowed scientists to improve reference genome assemblies in terms of contiguity and composition. EquCab2, a reference genome for the domestic horse, was released in 2007. Although of equal or better quality compared to other first-generation Sanger assemblies, it had many of the shortcomings common to them. In 2014, the equine genomics research community began a project to improve the reference sequence for the horse, building upon the solid foundation of EquCab2 and incorporating new short-read data, long-read data, and proximity ligation data. Here, we present EquCab3. The count of non-N bases in the incorporated chromosomes is improved from 2.33 Gb in EquCab2 to 2.41 Gb in EquCab3. Contiguity has also been improved nearly 40-fold with a contig N50 of 4.5 Mb and scaffold contiguity enhanced to where all but one of the 32 chromosomes is comprised of a single scaffold
    • …
    corecore