610 research outputs found

    Blackstone\u27s Theoretical Intentions;Note

    Get PDF

    Magnetic tight-binding and the iron-chromium enthalpy anomaly

    Full text link
    We describe a self consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non spin polarised reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to the Stoner--Slater rigid band model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe which we compare with results using the local spin density approximation. The rigid band model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.Comment: Submitted to Phys Rev

    Electronic structure and total energy of interstitial hydrogen in iron: Tight binding models

    Get PDF
    An application of the tight binding approximation is presented for the description of electronic structure and interatomic force in magnetic iron, both pure and containing hydrogen impurities. We assess the simple canonical d-band description in comparison to a non orthogonal model including s and d bands. The transferability of our models is tested against known properties including the segregation energies of hydrogen to vacancies and to surfaces of iron. In many cases agreement is remarkably good, opening up the way to quantum mechanical atomistic simulation of the effects of hydrogen on mechanical properties

    A simple environment-dependent overlap potential and Cauchy violation in solid argon

    Full text link
    We develop an analytic and environment-dependent interatomic potential for the overlap repulsion in solid argon, based on an approximate treatment of the non-orthogonal Tight-Binding theory for the closed-shell systems. The present model can well reproduce the observed elastic properties of solid argon including Cauchy violation at high pressures, yet very simple. A useful and novel analysis is given to show how the elastic properties are related to the environment-dependence incorporated into a generic pairwise potential. The present study has a close link to the broad field of computational materials science, in which the inclusion of environment dependence in short-ranged repulsive part of a potential model is sometimes crucial in predicting the elastic properties correctly.Comment: 10 pages, 3 figure

    Gaussian Approximation Potentials: the accuracy of quantum mechanics, without the electrons

    Get PDF
    We introduce a class of interatomic potential models that can be automatically generated from data consisting of the energies and forces experienced by atoms, derived from quantum mechanical calculations. The resulting model does not have a fixed functional form and hence is capable of modeling complex potential energy landscapes. It is systematically improvable with more data. We apply the method to bulk carbon, silicon and germanium and test it by calculating properties of the crystals at high temperatures. Using the interatomic potential to generate the long molecular dynamics trajectories required for such calculations saves orders of magnitude in computational cost.Comment: v3-4: added new material and reference

    Stress hyperglycaemia in critically ill patients and the subsequent risk of diabetes: a systematic review and meta-analysis.

    Get PDF
    Hyperglycaemia occurs frequently in critically ill patients without diabetes. We conducted a systematic review and meta-analysis to evaluate whether this 'stress hyperglycaemia' identifies survivors of critical illness at increased risk of subsequently developing diabetes.We searched the MEDLINE and Embase databases from their inception to February 2016. We included observational studies evaluating adults admitted to the intensive care unit (ICU) who developed stress hyperglycaemia if the researchers reported incident diabetes or prediabetes diagnosed ≥3 months after hospital discharge. Two reviewers independently screened the titles and abstracts of identified studies and evaluated the full text of relevant studies. Data were extracted using pre-defined data fields, and risk of bias was assessed using the Newcastle-Ottawa Scale. Pooled ORs with 95 % CIs for the occurrence of diabetes were calculated using a random-effects model.Four cohort studies provided 2923 participants, including 698 with stress hyperglycaemia and 131 cases of newly diagnosed diabetes. Stress hyperglycaemia was associated with increased risk of incident diabetes (OR 3.48; 95 % CI 2.02-5.98; I (2)  = 36.5 %). Studies differed with regard to definitions of stress hyperglycaemia, follow-up and cohorts studied.Stress hyperglycaemia during ICU admission is associated with increased risk of incident diabetes. The strength of this association remains uncertain because of statistical and clinical heterogeneity among the included studies.Yasmine Ali Abdelhamid, Palash Kar, Mark E. Finnis, Liza K. Phillips, Mark P. Plummer, Jonathan E. Shaw, Michael Horowitz and Adam M. Dean

    First-principles approach to model electrochemical reactions: understanding the fundamental mechanisms behind Mg corrosion

    Get PDF
    Combining concepts of semiconductor physics and corrosion science, we develop a novel approach that allows us to perform ab initio calculations under controlled potentiostat conditions for electrochemical systems. The proposed approach can be straightforwardly applied in standard density functional theory codes. To demonstrate the performance and the opportunities opened by this approach, we study the chemical reactions that take place during initial corrosion at the water-Mg interface under anodic polarization. Based on this insight, we derive an atomistic model that explains the origin of the anodic hydrogen evolution

    Stress induced hyperglycemia and the subsequent risk of type 2 diabetes in survivors of critical illness

    Get PDF
    OBJECTIVE: Stress induced hyperglycemia occurs in critically ill patients who have normal glucose tolerance following resolution of their acute illness. The objective was to evaluate the association between stress induced hyperglycemia and incident diabetes in survivors of critical illness. DESIGN: Retrospective cohort study. SETTING: All adult patients surviving admission to a public hospital intensive care unit (ICU) in South Australia between 2004 and 2011. PATIENTS: Stress induced hyperglycemia was defined as a blood glucose ≥ 11.1 mmol/L (200 mg/dL) within 24 hours of ICU admission. Prevalent diabetes was identified through ICD-10 coding or prior registration with the Australian National Diabetes Service Scheme (NDSS). Incident diabetes was identified as NDSS registration beyond 30 days after hospital discharge until July 2015. The predicted risk of developing diabetes was described as sub-hazard ratios using competing risk regression. Survival was assessed using Cox proportional hazards regression. MAIN RESULTS: Stress induced hyperglycemia was identified in 2,883 (17%) of 17,074 patients without diabetes. The incidence of type 2 diabetes following critical illness was 4.8% (821 of 17,074). The risk of diabetes in patients with stress induced hyperglycemia was approximately double that of those without (HR 1.91 (95% CI 1.62, 2.26), p<0.001) and was sustained regardless of age or severity of illness. CONCLUSIONS: Stress induced hyperglycemia identifies patients at subsequent risk of incident diabetes.Mark P. Plummer, Mark E. Finnis, Liza K. Phillips, Palash Kar, Shailesh Bihari, Vishwanath Biradar, Stewart Moodie, Michael Horowitz, Jonathan E. Shaw, Adam M. Dean

    Natural law, non-voluntary euthanasia, and public policy

    Full text link
    © 2019 by Emerald Publishing Limited. Natural Law philosophy asserts that there are universally binding and universally evident principles that can be determined to guide the actions of persons. Moreover, many of these principles have been enshrined in both statute and common law, thus ensuring their saliency for staff and institutions charged with palliative care. The authors examine the often emotive and politicized matter of (non-voluntary) euthanasia – acts or omissions made with the intent of causing or hastening death – with reference to Natural Law philosophy. This leads us to propose a number of important public policy remedies to ensure dignity in dying for the patient, and their associates
    • …
    corecore