475 research outputs found

    Superconductivity in Dense MgB2MgB_2 Wires

    Get PDF
    MgB2MgB_2 becomes superconducting just below 40 K. Whereas porous polycrystalline samples of MgB2MgB_2 can be synthesized from boron powders, in this letter we demonstrate that dense wires of MgB2MgB_2 can be prepared by exposing boron filaments to MgMg vapor. The resulting wires have a diameter of 160 μm{\mu}m, are better than 80% dense and manifest the full χ=1/4π\chi = -1/4{\pi} shielding in the superconducting state. Temperature-dependent resistivity measurements indicate that MgB2MgB_2 is a highly conducting metal in the normal state with ρ(40K)\rho (40 K) = 0.38 μOhm\mu Ohm-cmcm. Using this value, an electronic mean free path, l600 A˚l \approx 600~\AA can be estimated, indicating that MgB2MgB_2 wires are well within the clean limit. TcT_c, Hc2(T)H_{c2}(T), and JcJ_c data indicate that MgB2MgB_2 manifests comparable or better superconducting properties in dense wire form than it manifests as a sintered pellet.Comment: Figures' layout fixe

    Fluxon dynamics by microwave surface resistance measurements in MgB2

    Full text link
    Field-induced variations of the microwave surface resistance, Rs(H), have been investigated in high-density ceramic MgB2. At low temperatures, several peculiarities of the Rs(H) curves cannot be justified in the framework of models reported in the literature. We suggest that they are ascribable to the unconventional vortex structure in MgB2, related to the presence of two gaps. On the contrary, the results near Tc can be accounted for by the Coffey and Clem model, with fluxons moving in the flux-flow regime, provided that the anisotropy of the upper critical field is taken into due account.Comment: 6 pages, 4 figure

    Systematic effects of carbon doping on the superconducting properties of Mg(B1x_{1-x}Cx_x)2_2

    Full text link
    The upper critical field, Hc2H_{c2}, of Mg(B1x_{1-x}Cx_x)2_2 has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped boron filaments are prepared by CVD techniques, and then these fibers are then exposed to Mg vapor to form the superconducting compound. The transition temperatures are depressed about 1K/1 K/% C and Hc2(T=0)H_{c2}(T=0) rises at about 5T/5 T/% C. This means that 3.5% C will depress TcT_c from 39.2K39.2 K to 36.2K36.2 K and raise Hc2(T=0)H_{c2}(T=0) from 16.0T16.0 T to 32.5T32.5 T. Higher fields are probably attainable in the region of 5% C to 7% C. These rises in Hc2H_{c2} are accompanied by a rise in resistivity at 40K40 K from about 0.5μΩcm0.5 \mu \Omega cm to about 10μΩcm10 \mu \Omega cm. Given that the samples are polycrystalline wire segments, the experimentally determined Hc2(T)H_{c2}(T) curves represent the upper Hc2(T)H_{c2}(T) manifold associated with HcH\perp c

    Effects of Neutron Irradiation on Carbon Doped MgB2 Wire Segments

    Full text link
    We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B.962_{.962}C.038_{.038})2_2 wire segments as a function of post exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2_{c2}(T=0), approximately scales with Tc_c starting with an undamaged Tc_c near 37 K and Hc2_{c2}(T=0) near 32 T. Up to an annealing temperature of 400 o^ oC the recovery of Tc_c tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 o^ oC a decrease in order along the c- direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc_c and Hc2_{c2}. To first order, it appears that carbon doping and neutron damaging effect the superconducting properties of MgB2_2 independently

    Penetration Depth and Anisotropy in MgB2

    Full text link
    The penetration depth lambda of MgB2 was deduced from both the ac susceptibility chi and the magnetization M(H) of sorted powders. The good agreement between the two sets of data without geometric correction for the grain orientation suggests that MgB2 is an isotropic superconductor.Comment: 9 pages, 5 figures; submitted to Physical Review B (February 28, 2001; revised June 28, 2001); reference list update

    Temperature-dependent Hc2H_{c2} anisotropy in MgB2_2 as inferred from measurements on polycrystals

    Get PDF
    We present data on temperature-dependent anisotropy of the upper critical field of MgB2_2 obtained from the analysis of measurements on high purity, low resistivity polycrystals. The anisotropy decreases in a monotonic fashion with increase of temperature

    Experimental observation of high field diamagnetic fluctuations in Niobium

    Get PDF
    We have performed a magnetic study of a bulk metallic sample of Nb with critical temperature Tc=8.5T_{c}=8.5 K. Magnetization versus temperature (M {\it vs} T) data obtained for fixed magnetic fields above 1 kOe show a superconducting transition which becomes broader as the field is increased. The data are interpreted in terms of the diamagnetic lowest Landau level (LLL) fluctuation theory. The scaling analysis gives values of the superconducting transition temperature Tc(H)T_{c}(H) consistent with Hc2(T)H_{c2}(T)% . We search for universal 3D LLL behavior by comparing scaling results for Nb and YBaCuO, but obtain no evidence for universality.Comment: 5 pages, 6 figures, Accepted for publication in Phys.Rev.

    Magnetoresistivity and Complete Hc2(T)H_{c2}(T) in MgB2MgB_2

    Full text link
    Detailed magneto-transport data on dense wires of MgB2MgB_2 are reported for applied magnetic fields up to 18 T. The temperature and field dependencies of the electrical resistivity are consistent with MgB2MgB_2 behaving like a simple metal and following a generalized form of Kohler's rule. In addition, given the generally high TcT_c values and narrow resistive transition widths associated with MgB2MgB_2 synthesized in this manner, combined with applied magnetic fields of up to 18 T, an accurate and complete Hc2(T)H_{c2}(T) curve could be determined. This curve agrees well with curves determined from lower field measurements on sintered pellets and wires of MgB2MgB_2. Hc2(T)H_{c2}(T) is linear in TT over a wide range of temperature (7 K  T \le~T~\le 32 K) and has an upward curvature for TT close to TcT_c. These features are similar to other high κ\kappa, clean limit, boron-bearing intermetallics: YNi2B2CYNi_2B_2C and LuNi2B2CLuNi_2B_2C.Comment: minor changes in styl

    Analysis of Geometrical Relationships and Friction Losses in Small-Diameter Lay-Flat Polyethylene Pipes

    Full text link
    [EN] The use of lay-flat polyethylene pipes to irrigate horticultural crops has been receiving widespread attention in the last decade, due to the significant improvements in their hydraulic performance, their potentially high application efficiency, and their limited installation costs. However, even if hydraulic design procedures for conventional microirrigation systems are fairly well established, there is still the need to know how different pipe-wall thicknesses of lay-flat pipes can affect the pipe geometry under different operating pressures as well as the related consequences on friction losses. This paper, after comparing two different procedures (caliper and photographic) to assess the geometry of lay-flat polyethylene pipes under different operating pressures, analyzes the friction losses per unit of pipe length, J, in order to identify and to assess a procedure for their evaluation. Hydrostatic tests, initially carried out on pipes with wall thicknesses of 6, 8, and 10 thousandth of an inch (mil), evidenced that the pipe dimensions measured with both methods are quite similar, despite the generally higher standard deviations characterizing caliper measurements when compared to photographic method. Tests allowed to verify that most of the changes in pipe dimensions occur within a range of pressure from 0 kPa to about 30 kPa, with pipe horizontal width and vertical height quite similar at higher pressures and pipes have a tendency to become circular. Additionally, due to the elasticity of the material, over a certain limit of water pressure, both the pipe dimensions tend to rise, with a trend depending on pipe thickness. According to the experimental data, the relationships between pipe effective diameter and water pressure were then determined for the three considered pipes. Moreover, based on measured friction losses and pipe effective diameters, it was confirmed that the relationship between the Darcy-Weisbach friction factor, f, and the Reynolds number, R, can be described by a power equation in which, by assuming a value of -0.25 for the exponent, it results a coefficient c = 0.285, lower than the theoretical. For the three investigated pipes the errors associated to estimated J were finally evaluated by considering (1) the experimental relationships between friction factor and Reynolds number as well as between pipe diameter and operating pressure (Case A); (2) the same value of c, but pipe effective diameters of 16.20, 16.10, and 15.85 mm corresponding to p = p(lim) (Case B); (3) the standard procedure, with a value of c = 0.302 and the pipe diameter equal to 16.10 mm, as suggested by the manufacturer. The results evidenced that suitable estimations of J need to account for the variations of the pipe effective diameter with water pressure. On the other hand, incorrect values of pipe diameter combined with inexact values of the friction factor generate inaccurate estimations of friction losses, with unavoidable consequences in pipe design. (C) 2015 American Society of Civil Engineers.The research was cofinanced by Universita di Palermo (FFR 2011) and Ministero dell'Istruzione, dell'Universita e della Ricerca (PRIN 2010). All the authors setup the research and discussed the results. V. Alagna and D. Autovino carried out the experimental measurements and G. Provenzano wrote the paper. A special thank to the Committee for International Relations Office (CORI) of University of Palermo to support the research cooperation with the University of Valencia.Provenzano, G.; Alagna, V.; Autovino, D.; Manzano Juarez, J.; Rallo, G. (2016). Analysis of Geometrical Relationships and Friction Losses in Small-Diameter Lay-Flat Polyethylene Pipes. Journal of Irrigation and Drainage Engineering. 142(2):1-9. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000958S19142

    Order parameter of MgB_2: a fully gapped superconductor

    Full text link
    We have measured the low-temperature specific heat C(T) for polycrystalline MgB_2 prepared by high pressure synthesis. C(T) below 10 K vanishes exponentially, which unambiguously indicates a fully opened superconducting energy gap. However, this gap is found to be too small to account for Tc of MgB_2. Together with the small specific heat jump DeltaC/gamma_nTc=1.13, scenarios like anisotropic s-wave or multi-component order parameter are called for. The magnetic field dependence of gamma(H) is neither linear for a fully gapped s-wave superconductor nor H^1/2 for nodal order parameter. It seems that this intriguing behavior of gamma(H) is associated with the intrinsic electronic properties other than flux pinning.Comment: 7 pages, 5 figures; revised text and figures; references updated, Phys. Rev. Lett., in pres
    corecore