11,425 research outputs found

    The use of multilayer network analysis in animal behaviour

    Get PDF
    Network analysis has driven key developments in research on animal behaviour by providing quantitative methods to study the social structures of animal groups and populations. A recent formalism, known as \emph{multilayer network analysis}, has advanced the study of multifaceted networked systems in many disciplines. It offers novel ways to study and quantify animal behaviour as connected 'layers' of interactions. In this article, we review common questions in animal behaviour that can be studied using a multilayer approach, and we link these questions to specific analyses. We outline the types of behavioural data and questions that may be suitable to study using multilayer network analysis. We detail several multilayer methods, which can provide new insights into questions about animal sociality at individual, group, population, and evolutionary levels of organisation. We give examples for how to implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences about social structure and the positions of individuals within such a structure. Finally, we discuss caveats to undertaking multilayer network analysis in the study of animal social networks, and we call attention to methodological challenges for the application of these approaches. Our aim is to instigate the study of new questions about animal sociality using the new toolbox of multilayer network analysis.Comment: Thoroughly revised; title changed slightl

    On recurrence and ergodicity for geodesic flows on noncompact periodic polygonal surfaces

    Get PDF
    We study the recurrence and ergodicity for the billiard on noncompact polygonal surfaces with a free, cocompact action of Z\Z or Z2\Z^2. In the Z\Z-periodic case, we establish criteria for recurrence. In the more difficult Z2\Z^2-periodic case, we establish some general results. For a particular family of Z2\Z^2-periodic polygonal surfaces, known in the physics literature as the wind-tree model, assuming certain restrictions of geometric nature, we obtain the ergodic decomposition of directional billiard dynamics for a dense, countable set of directions. This is a consequence of our results on the ergodicity of \ZZ-valued cocycles over irrational rotations.Comment: 48 pages, 12 figure

    Binary inspiral, gravitational radiation, and cosmology

    Get PDF
    Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged according to signal-to-noise ratio ρ\rho and chirp mass M\cal M. The distribution of events in a catalog composed of observations with ρ\rho greater than a threshold ρ0\rho_0 depends on the Hubble expansion, deceleration parameter, and cosmological constant, as well as the distribution of component masses in binary systems and evolutionary effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model, for the distribution with ρ\rho and M\cal M of cataloged events; I also evaluate these distributions explicitly for relevant matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will observe binary neutron star inspiral events with ρ>8\rho>8 from distances not exceeding approximately 2 Gpc2\,\text{Gpc}, corresponding to redshifts of 0.480.48 (0.26) for h=0.8h=0.8 (0.50.5), at an estimated rate of 1 per week. As the binary system mass increases so does the distance it can be seen, up to a limit: in a matter dominated Einstein-deSitter cosmological model with h=0.8h=0.8 (0.50.5) that limit is approximately z=2.7z=2.7 (1.7) for binaries consisting of two 10 M⊙10\,\text{M}_\odot black holes. Cosmological tests based on catalogs of the kind discussed here depend on the distribution of cataloged events with ρ\rho and M\cal M. The distributions found here will play a pivotal role in testing cosmological models against our own universe and in constructing templates for the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st

    The Origin of Black Hole Entropy in String Theory

    Get PDF
    I review some recent work in which the quantum states of string theory which are associated with certain black holes have been identified and counted. For large black holes, the number of states turns out to be precisely the exponential of the Bekenstein-Hawking entropy. This provides a statistical origin for black hole thermodynamics in the context of a potential quantum theory of gravity.Comment: 18 pages (To appear in the proceedings of the Pacific Conference on Gravitation and Cosmology, Seoul, Korea, February 1-6, 1996.

    Relativistic corrections to the Pionium Lifetime

    Get PDF
    Next to leading order contributions to the pionium lifetime are considered within non-relativistic effective field theory. A more precise determination of the coupling constants is then needed in order to be consistent with the relativistic pion-pion scattering amplitude which can be obtained from chiral perturbation theory. The relativistic correction is found to be 4.1% and corresponds simply to a more accurate value for the non-relativistic decay momentum.Comment: 5 pages, Latex. Includes corrections based on a more precise matching to the pion-pion scattering amplitude from chiral perturbation theor

    Topological Entropy of Braids on the Torus

    Full text link
    A fast method is presented for computing the topological entropy of braids on the torus. This work is motivated by the need to analyze large braids when studying two-dimensional flows via the braiding of a large number of particle trajectories. Our approach is a generalization of Moussafir's technique for braids on the sphere. Previous methods for computing topological entropies include the Bestvina--Handel train-track algorithm and matrix representations of the braid group. However, the Bestvina--Handel algorithm quickly becomes computationally intractable for large braid words, and matrix methods give only lower bounds, which are often poor for large braids. Our method is computationally fast and appears to give exponential convergence towards the exact entropy. As an illustration we apply our approach to the braiding of both periodic and aperiodic trajectories in the sine flow. The efficiency of the method allows us to explore how much extra information about flow entropy is encoded in the braid as the number of trajectories becomes large.Comment: 19 pages, 44 figures. SIAM journal styl

    Observational constraints on the neutron star mass distribution

    Get PDF
    Radio observations of neutron star binary pulsar systems have constrained strongly the masses of eight neutron stars. Assuming neutron star masses are uniformly distributed between lower and upper bounds mlm_l and mum_u, the observations determine with 95\% confidence that 1.01<ml/M⊙<1.341.01 < m_l/\text{M}_\odot < 1.34 and 1.43<mu/M⊙<1.641.43 < m_u/\text{M}_\odot < 1.64. These limits give observational support to neutron star formation scenarios that suggest that masses should fall predominantly in the range 1.3<m/M⊙<1.61.3<m/\text{M}_\odot<1.6, and will also be important in the interpretation of binary inspiral observations by the Laser Interferometer Gravitational-wave Observatory.Comment: Postscript, 4 pages, NU-GR-

    Addendum to: Capillary floating and the billiard ball problem

    Get PDF
    We compare the results of our earlier paper on the floating in neutral equilibrium at arbitrary orientation in the sense of Finn-Young with the literature on its counterpart in the sense of Archimedes. We add a few remarks of personal and social-historical character.Comment: This is an addendum to my article Capillary floating and the billiard ball problem, Journal of Mathematical Fluid Mechanics 14 (2012), 363 -- 38
    • 

    corecore