14 research outputs found

    First cosmology results using type Ia supernovae from the Dark Energy Survey: constraints on cosmological parameters

    Get PDF
    We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the literature. Our "DES-SN3YR" result from these 329 SNe Ia is based on a series of companion analyses and improvements covering SN Ia discovery, spectroscopic selection, photometry, calibration, distance bias corrections, and evaluation of systematic uncertainties. For a flat LCDM model we find a matter density Omega_m = 0.331 +_ 0.038. For a flat wCDM model, and combining our SN Ia constraints with those from the cosmic microwave background (CMB), we find a dark energy equation of state w = -0.978 +_ 0.059, and Omega_m = 0.321 +_ 0.018. For a flat w0waCDM model, and combining probes from SN Ia, CMB and baryon acoustic oscillations, we find w0 = -0.885 +_ 0.114 and wa = -0.387 +_ 0.430. These results are in agreement with a cosmological constant and with previous constraints using SNe Ia (Pantheon, JLA)

    The ALFA medium explorer mission

    No full text
    The frequency range below a few tens of MHz is unexplored with high angular resolution due to the opacity of Earth's ionosphere. An interferometer array in space providing arcminute angular resolution images at frequencies of a few MHz would allow a wide range of problems in solar, planetary, galactic, and extragalactic astronomy to be attacked. These include the evolution of solar radio emissions associated with shocks driven by coronal mass ejections and searches for coherent radio emission from supernova remnants and relativistic jets, in addition, it is likely that unexpected objects or emission processes will be discovered by such an instrument, as has always happened when high resolution astronomical observations first become possible in a new region of the electromagnetic spectrum. The Astronomical Low Frequency Array (ALFA) mission will consist of 16 identical small satellites forming an aperture synthesis array. The satellites will cover the surface of a spherical region approximate to 100 km in diameter, thus providing good aperture plane coverage in all directions simultaneously. The array will operate in two modes: 1) "snapshot" imaging of strong, rapidly changing sources such as solar radio bursts and 2) long-term aperture synthesis observations for maximum sensitivity, high dynamic range imaging, in both cases a large number of array elements is needed
    corecore