49 research outputs found

    Surface enhanced Raman scattering using metal modified microstructured optical fibre substrates

    No full text
    We report the fabrication of metallic metamaterials using microstructured optical fibres as templates. The resulting fibres serve as excellent substrates for surface enhanced Raman spectroscopy and represent an exciting platform for in-fibre plasmonic devices

    Impact of acute consumption of beverages containing plant-based or alternative sweetener blends on postprandial appetite, food intake, metabolism, and gastro-intestinal symptoms: Results of the SWEET beverages trial

    Get PDF
    Project SWEET examined the barriers and facilitators to the use of non-nutritive sweeteners and sweetness enhancers (hereafter "S&SE") alongside potential risks/benefits for health and sustainability. The Beverages trial was a double-blind multi-centre, randomised crossover trial within SWEET evaluating the acute impact of three S&SE blends (plant-based and alternatives) vs. a sucrose control on glycaemic response, food intake, appetite sensations and safety after a carbohydrate-rich breakfast meal. The blends were: mogroside V and stevia RebM; stevia RebA and thaumatin; and sucralose and acesulfame-potassium (ace-K). At each 4 h visit, 60 healthy volunteers (53% male; all with overweight/obesity) consumed a 330 mL beverage with either an S&SE blend (0 kJ) or 8% sucrose (26 g, 442 kJ), shortly followed by a standardised breakfast (∼2600 or 1800 kJ with 77 or 51 g carbohydrates, depending on sex). All blends reduced the 2-h incremental area-under-the-curve (iAUC) for blood insulin (p 0.05 for all). Compared with sucrose, there was a 3% increase in LDL-cholesterol after stevia RebA-thaumatin (p < 0.001 in adjusted models); and a 2% decrease in HDL-cholesterol after sucralose-ace-K (p < 0.01). There was an impact of blend on fullness and desire to eat ratings (both p < 0.05) and sucralose-acesulfame K induced higher prospective intake vs sucrose (p < 0.001 in adjusted models), but changes were of a small magnitude and did not translate into energy intake differences over the next 24 h. Gastro-intestinal symptoms for all beverages were mostly mild. In general, responses to a carbohydrate-rich meal following consumption of S&SE blends with stevia or sucralose were similar to sucrose

    Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics

    Get PDF
    CdSe quantum dots functionalized with oligo-(phenylene vinylene) (OPV) ligands (CdSe-OPV nanostructures) represent a new class of composite nanomaterials with significantly modified photophysics relative to bulk blends or isolated components. Single-molecule spectroscopy on these species have revealed novel photophysics such as enhanced energy transfer, spectral stability, and strongly modified excited state lifetimes and blinking statistics. Here, we review the role of ligands in quantum dot applications and summarize some of our recent efforts probing energy and charge transfer in hybrid CdSe-OPV composite nanostructures

    Comment on "Optical characterization of quantum dots entrained in microstructured optical fibers" [Physica E 26 (2005) 377-381]

    No full text
    In a recent paper, K.E. Meissner, C. Holton, W.B. Spillman Jr. [Physica E 26 (2005) 377] presented a study of the optical properties of colloidal CdSe/ZnS core-shell quantum dots entrained in a microstructured optical fiber. In particular, the authors claimed to have observed optical gain in this system through tight evanescent coupling between a probe light in the core of the fiber and photo-excited quantum dots in the cladding. I suggest that there are fundamental reasons, which are well investigated experimentally and documented, why such quantum dots cannot exhibit optical gain phenomena under continuous-wave excitation, as the authors suggest, and that the experimental results and interpretation do not address these issues, nor do they adequately justify the conclusions reached

    Strong exciton-photon coupling in a length tunable optical microcavity

    No full text
    We report the incorporation of thin films of a cyanine dye J aggregate into a versatile, length tunable, optical microcavity. The dense J-aggregate layers give an optical response that can be modified by embedding them at specific positions within heterostructures of dielectric and metal layers. The microcavities are composed of separate gold mirrors, which can be individually nanopositioned, and give sharp resonant modes in the red/near-infrared region of the spectrum. With the dye layer favorably placed, anticrossing behavior is observed as the cavity modes are successively swept through the absorption resonance. Large Rabi splittings of up to 170 meV are achieved at room temperature, agreeing well with predictions from a transfer-matrix model. These strongly coupled microcavities pave the way for microelectromechanical systems-integrated microdevices with tailored nonlinear optical properties

    Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide

    Get PDF
    We report ultrabroadband measurements on waveguides of photoluminescent silicon-rich silicon dioxide produced by plasma enhanced chemical vapor deposition. Material absorption below 700 nm and waveguide loss above 1300 nm leave a broad spectral region of good transmission properties, which overlaps with the photoluminescence spectrum of the core material. Proposed mechanisms for the material absorption and photoluminescence are discussed based on our findings

    Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers

    No full text
    Extreme aspect ratio tubes and wires of polycrystalline silicon and germanium have been deposited within silica microstructured optical fibers using high-pressure precursors, demonstrating the potential of a platform technology for the development of in-fiber optoelectronics. Microstructural studies of the deposited material using Raman spectroscopy show effects due to strain between core and cladding and the presence of amorphous and polycrystalline phases for silicon. Germanium, in contrast, is more crystalline and less strained. This in-fiber device geometry is utilized for two- and three-terminal electrical characterization of the key parameters of resistivity and carrier type, mobility and concentration
    corecore