107 research outputs found

    Surface and implantation effects on p-n junctions

    Get PDF
    The contribution of the graded region of implanted p-n junctions is analyzed using an exponential profile. Though previously neglected, it was recently shown that this contribution to the saturation current of HgCdTe diodes is significant. Assuming a dominant Auger recombination, an analytical solution to the continuity equation is obtained. An expression for the current generation by the graded region is presented for both ohmic and reflecting boundary conditions. A revised condition for a wide region is derived. When the region is narrow, the current differs drastically from that of the zero-gradient case. The effects of the junction depth and the substrate and surface concentrations on the current are investigated. It is shown that the reverse current does not saturate

    Sub-nanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation

    Get PDF
    A facility for sub-nanosecond time-resolved (pump-probe) infrared spectroscopy has been developed at the National Synchrotron Light Source of Brookhaven National Laboratory. A mode-locked Ti:sapphire laser produces 2 ps duration, tunable near-IR pump pulses synchronized to probe pulses from a synchrotron storage ring. The facility is unique on account of the broadband infrared from the synchrotron, which allows the entire spectral range from 2 cm-1 (0.25 meV) to 20,000 cm-1 (2.5 eV) to be probed. A temporal resolution of 200 ps, limited by the infrared synchrotron-pulse duration, is achieved. A maximum time delay of 170 ns is available without gating the infrared detector. To illustrate the performance of the facility, a measurement of electron-hole recombination dynamics for an HgCdTe semiconductor film in the far- and mid infrared range is presented.Comment: 11 pages with 9 figures include

    Ultrafast control of donor-bound electron spins with single detuned optical pulses

    Full text link
    The ability to control spins in semiconductors is important in a variety of fields including spintronics and quantum information processing. Due to the potentially fast dephasing times of spins in the solid state [1-3], spin control operating on the picosecond or faster timescale may be necessary. Such speeds, which are not possible to attain with standard electron spin resonance (ESR) techniques based on microwave sources, can be attained with broadband optical pulses. One promising ultrafast technique utilizes single broadband pulses detuned from resonance in a three-level Lambda system [4]. This attractive technique is robust against optical pulse imperfections and does not require a fixed optical reference phase. Here we demonstrate the principle of coherent manipulation of spins theoretically and experimentally. Using this technique, donor-bound electron spin rotations with single-pulse areas exceeding pi/4 and two-pulses areas exceeding pi/2 are demonstrated. We believe the maximum pulse areas attained do not reflect a fundamental limit of the technique and larger pulse areas could be achieved in other material systems. This technique has applications from basic solid-state ESR spectroscopy to arbitrary single-qubit rotations [4, 5] and bang-bang control[6] for quantum computation.Comment: 15 pages, 4 figures, submitted 12/2008. Since the submission of this work we have become aware of related work: J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320: 349-352 (2008

    Kinetics of exciton photoluminescence in type-II semiconductor superlattices

    Full text link
    The exciton decay rate at a rough interface in type-II semiconductor superlattices is investigated. It is shown that the possibility of recombination of indirect excitons at a plane interface essentially affects kinetics of the exciton photoluminescence at a rough interface. This happens because of strong correlation between the exciton recombination at the plane interface and at the roughness. Expressions that relate the parameters of the luminescence kinetics with statistical characteristics of the rough interface are obtained. The mean height and length of roughnesses in GaAs/AlAs superlattices are estimated from the experimental data.Comment: 3 PostScript figure

    Lattice dynamics study of HgGa2Se4 at high pressures

    Full text link
    We report on Raman scattering measurements in mercury digallium selenide (HgGa2Se4) up to 25 GPa. We also performed, for the low-pressure defect-chalcopyrite structure, lattice-dynamics ab initio calculations at high pressures which agree with experiments. Measurements evidence that the semiconductor HgGa2Se4 exhibits a pressure-induced phase transition above 19 GPa to a previously undetected structure. This transition is followed by a transformation to a Raman-inactive phase above 23.4 GPa. On downstroke from 25 GPa until 2.5 GPa, a broad Raman spectrum was observed, which has been attributed to a fourth phase, and whose pressure dependence was followed during a second upstroke. Candidate structures for the three phases detected under compression are proposed. Finally, we also report and discuss the decomposition of the sample by laser heating at pressures close to 19 GPa. As possible products of decomposition, we have identified at least the formation of trigonal selenium nanoclusters and cinnabar-type HgSe.This study was supported by the Spanish government MEC under Grant No. MAT2010-21270-004-01/03/04, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), by Generalitat Valenciana through project GVA-ACOMP-2013-012, and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0966 and UPV2011-0914). E.P.-G., J.L.-S., A.M., and P.R.-H. acknowledge computing time provided by Red Espanola de Super-computacion (RES) and MALTA-Cluster.Vilaplana Cerda, RI.; Gomis Hilario, O.; Manjón Herrera, FJ.; Ortiz, HM.; Pérez González, E.; López Solano, J.; Rodríguez Hernández, P.... (2013). Lattice dynamics study of HgGa2Se4 at high pressures. Journal of Physical Chemistry C. 117(30):15773-15781. https://doi.org/10.1021/jp402493rS15773157811173

    gallium arsenide (GaAs), bound exciton lifetimes

    No full text

    Anodic Oxide Films on Hg1 − x Cd x Te

    No full text

    Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors

    Get PDF
    3 páginas, 3 figuras.-- PACS: 85.60.Gz, 85.35.BeThermal generation rate in quantum dots (QD) can be significantly smaller than in quantum wells, rendering a much improved signal to noise ratio. QDs infrared photodetectors were implemented, composed of ten layers of self-assembled InAs dots grown on GaAs substrate. Low temperature spectral response shows two peaks at low bias, and three at a high one, polarized differently. The electronic level structure is determined, based on polarization, bias, and temperature dependence of the transitions. Although absorbance was not observed, a photoconductive signal was recorded. This may be attributed to a large photoconductive gain due to a relatively long lifetime, which indicates, in turn, a reduced generation rate.This research was partially supported by the Israeli Ministry of Science and Technology. Two of the authors (P.P. and J.G.) received financial support from QUEST, an NSF Science and Technology Center (DMR 11-20007)Peer reviewe
    corecore