7,951 research outputs found
Light environment - A. Visible light. B. Ultraviolet light
Visible and ultraviolet light environment as related to human performance and safety during space mission
Suppression of superconductivity in granular metals
We investigate the suppression of the superconducting transition temperature
due to Coulomb repulsion in granular metallic systems at large tunneling
conductance between the grains, . We find the correction to the
superconducting transition temperature for 3 granular samples and films. We
demonstrate that depending on the parameters of superconducting grains, the
corresponding granular samples can be divided into two groups: (i) the granular
samples that belong to the first group may have only insulating or
superconducting states at zero temperature depending on the bare intergranular
tunneling conductance , while (ii) the granular samples that belong to the
second group in addition have an intermediate metallic phase where
superconductivity is suppressed while the effects of the Coulomb blockade are
not yet strong.Comment: 4 pages, 3 figure
Universal Description of Granular Metals at Low Temperatures: Granular Fermi Liquid
We present a unified description of the low temperature phase of granular
metals that reveals a striking generality of the low temperature behaviors. Our
model explains the universality of the low-temperature conductivity that
coincides exactly with that of the homogeneously disordered systems and enables
a straightforward derivation of low temperature characteristics of disordered
conductors.Comment: 4 pages, 1 figur
Renormalization of hole-hole interaction at decreasing Drude conductivity
The diffusion contribution of the hole-hole interaction to the conductivity
is analyzed in gated GaAs/InGaAs/GaAs heterostructures. We show
that the change of the interaction correction to the conductivity with the
decreasing Drude conductivity results both from the compensation of the singlet
and triplet channels and from the arising prefactor in the
conventional expression for the interaction correction.Comment: 6 pages, 5 figure
Metallic spin glasses
Recent work on the zero temperature phases and phase transitions of strongly
random electronic system is reviewed. The transition between the spin glass and
quantum paramagnet is examined, for both metallic and insulating systems.
Insight gained from the solution of infinite range models leads to a quantum
field theory for the transition between a metallic quantum paramagnetic and a
metallic spin glass. The finite temperature phase diagram is described and
crossover functions are computed in mean field theory. A study of fluctuations
about mean field leads to the formulation of scaling hypotheses.Comment: Contribution to the Proceedings of the ITP Santa Barbara conference
on Non-Fermi liquids, 25 pages, requires IOP style file
Critical behavior of density of states near Fermi energy in low-dimensional disordered metals
We study the effect of electron-electron interaction on the one-particle
density of states (\emph{DOS}) of low-dimensional
disordered metals near Fermi energy within the framework of the finite
temperature conventional impurity diagram technique. We consider only diffusive
limit and by a geometric re-summation of the most singular first order
self-energy corrections via the Dyson equation we obtain a non-divergent
solution for the \emph{DOS} at low energies, while for higher energies the
well-known Altshuler-Aronov corrections are recovered. At the Fermi level
, this indicates that interacting disordered
two- and quasi-one-dimensional systems are in insulating state at zero
temperature. The obtained results are in good agreement with recent tunneling
experiments on two-dimensional GaAs/AlGaAs heterostructures and
quasi-one-dimensional doped multiwall carbon nanotubes.Comment: 8 pages, 4 figure
New constraints on dust emission and UV attenuation of z=6.5-7.5 galaxies from millimeter observations
We have targeted two recently discovered Lyman break galaxies (LBGs) to
search for dust continuum and [CII] 158 micron line emission. The strongly
lensed z~6.8 LBG A1703-zD1 behind the galaxy cluster Abell 1703, and the
spectroscopically confirmed z=7.508 LBG z8-GND-5296 in the GOODS-N field have
been observed with the Plateau de Bure interferometer (PdBI) at 1.2mm. These
observations have been combined with those of three z>6.5 Lya emitters (named
HCM6A, Himiko, and IOK-1), for which deep measurements were recently obtained
with the PdBI and ALMA. [CII] is undetected in both galaxies, providing a deep
upper limit for Abell1703-zD1, comparable to recent ALMA non-detections. Dust
continuum emission from Abell1703-zD1 and z8-GND-5296 is not detected with an
rms of 0.12 and 0.16 mJy/beam. From these non-detections we derive upper limits
on their IR luminosity and star formation rate, dust mass, and UV attenuation.
Thanks to strong gravitational lensing the limit for Abell1703-zD1 is probing
the sub-LIRG regime ( Lsun) and very low dust
masses ( Msun). We find that all five galaxies are
compatible with the Calzetti IRX- relation, their UV attenuation is
compatible with several indirect estimates from other methods (the UV slope,
extrapolation of the attenuation measured from the IR/UV ratio at lower
redshift, and SED fits), and the dust-to-stellar mass ratio is not incompatible
with that of galaxies from z=0 to 3. For their stellar mass the high-z galaxies
studied here have an attenuation below the one expected from the mean relation
of low redshift (z<1.5) galaxies. More and deeper (sub)-mm data are clearly
needed to directly determine the UV attenuation and dust content of the
dominant population of high-z star-forming galaxies and to establish more
firmly their dependence on stellar mass, redshift, and other properties.Comment: 10 pages, 7 figures. Minor revisions. Accepted for publication in A&
Topological oscillations of the magnetoconductance in disordered GaAs layers
Oscillatory variations of the diagonal () and Hall ()
magnetoconductances are discussed in view of topological scaling effects giving
rise to the quantum Hall effect. They occur in a field range without
oscillations of the density of states due to Landau quantization, and are,
therefore, totally different from the Shubnikov-de Haas oscillations. Such
oscillations are experimentally observed in disordered GaAs layers in the
extreme quantum limit of applied magnetic field with a good description by the
unified scaling theory of the integer and fractional quantum Hall effect.Comment: 4 pages, 4 figure
- …