196 research outputs found

    A Synchrotron Mössbauer Spectroscopy Study of a Hydrated Iron-Sulfate at High Pressures

    Get PDF
    Szomolnokite is a monohydrated ferrous iron sulfate mineral, FeSO₄·H₂O, where the ferrous iron atoms are in octahedral coordination with four corners shared with SO4 and two with H₂O groups. While somewhat rare on Earth, szomolnokite has been detected on the surface of Mars along with several other hydrated sulfates and is suggested to occur near the surface of Venus. Previous measurements have characterized the local environment of the iron atoms in szomolnokite using Mössbauer spectroscopy at a range of temperatures and 1 bar. Our study represents a step towards understanding the electronic environment of iron in szomolnokite under compression at 300 K. Using a hydrostatic helium pressure-transmitting medium, we explored the pressure dependence of iron’s site-specific behavior in a synthetic szomolnokite powdered sample up to 95 GPa with time-domain synchrotron Mössbauer spectroscopy. At 1 bar, the Mössbauer spectrum is well described by two Fe²⁺-like sites and no ferric iron, consistent with select conventional Mössbauer spectra evaluations. At pressures below 19 GPa, steep gradients in the hyperfine parameters are most likely due to a structural phase transition. At 19 GPa, a fourth site is required to explain the time spectrum with increasing fractions of a low quadrupole splitting site, which could indicate the onset of another transition. Above 19 GPa we present three different models, including those with a high- to low-spin transition, that provide reasonable scenarios of electronic environment changes of the iron in szomolnokite with pressure. We summarize the complex range of Fe²⁺ spin transition characteristics at high-pressures by comparing szomolnokite with previous studies on ferrous-iron bearing phases

    Strongly Anisotropic Magnesiowüstite in Earth's Lower Mantle

    Get PDF
    The juxtaposition of a liquid iron‐dominant alloy against a mixture of silicate and oxide minerals at Earth's core‐mantle boundary is associated with a wide range of complex seismological features. One category of observed structures is ultralow‐velocity zones, which are thought to correspond to either aggregates of partially molten material or solid, iron‐enriched assemblages. We measured the phonon dispersion relations of (Mg,Fe) O magnesiowüstite containing 76 mol % FeO, a candidate ultralow‐velocity zone phase, at high pressures using high‐energy resolution inelastic X‐ray scattering. From these measurements, we find that magnesiowüstite becomes strongly elastically anisotropic with increasing pressure, potentially contributing to a significant proportion of seismic anisotropy detected near the base of the mantle

    Using Dark Energy Explorers and Machine Learning to Enhance the Hobby-Eberly Telescope Dark Energy Experiment

    Get PDF
    We present analysis using a citizen science campaign to improve the cosmological measures from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the Hubble expansion rate, H(z)H(z), and angular diameter distance, DA(z)D_A(z), at z=z = 2.4, each to percent-level accuracy. This accuracy is determined primarily from the total number of detected Lyman-α\alpha emitters (LAEs), the false positive rate due to noise, and the contamination due to [O II] emitting galaxies. This paper presents the citizen science project, Dark Energy Explorers, with the goal of increasing the number of LAEs, decreasing the number of false positives due to noise and the [O II] galaxies. Initial analysis shows that citizen science is an efficient and effective tool for classification most accurately done by the human eye, especially in combination with unsupervised machine learning. Three aspects from the citizen science campaign that have the most impact are 1) identifying individual problems with detections, 2) providing a clean sample with 100% visual identification above a signal-to-noise cut, and 3) providing labels for machine learning efforts. Since the end of 2022, Dark Energy Explorers has collected over three and a half million classifications by 11,000 volunteers in over 85 different countries around the world. By incorporating the results of the Dark Energy Explorers we expect to improve the accuracy on the DA(z)D_A(z) and H(z)H(z) parameters at z=z = 2.4 by 10 - 30%. While the primary goal is to improve on HETDEX, Dark Energy Explorers has already proven to be a uniquely powerful tool for science advancement and increasing accessibility to science worldwide.Comment: 14 pages, 6 figures, accepted for publication in The Astrophysical Journa

    The HETDEX Pilot Survey. IV. The Evolution of [O II] Emitting Galaxies from z ~ 0.5 to z ~ 0

    Full text link
    We present an analysis of the luminosities and equivalent widths of the 284 z < 0.56 [O II]-emitting galaxies found in the 169 square arcmin pilot survey for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). By combining emission-line fluxes obtained from the Mitchell spectrograph on the McDonald 2.7-m telescope with deep broadband photometry from archival data, we derive each galaxy's de-reddened [O II] 3727 luminosity and calculate its total star formation rate. We show that over the last ~5 Gyr of cosmic time there has been substantial evolution in the [O II] emission-line luminosity function, with L* decreasing by ~0.6 +/-0.2 dex in the observed function, and by ~0.9 +/-0.2 dex in the de-reddened relation. Accompanying this decline is a significant shift in the distribution of [O II] equivalent widths, with the fraction of high equivalent-width emitters declining dramatically with time. Overall, the data imply that the relative intensity of star formation within galaxies has decreased over the past ~5 Gyr, and that the star formation rate density of the universe has declined by a factor of ~2.5 between z ~ 0.5 and z ~ 0. These observations represent the first [O II]-based star formation rate density measurements in this redshift range, and foreshadow the advancements which will be generated by the main HETDEX survey.Comment: 11 pages with 9 figures and 1 table; accepted for publication in the Astrophysical Journa

    Probing the Star Formation History and Initial Mass Function of the z~2.5 Lensed Galaxy SMM J163554.2+661225 with Herschel

    Full text link
    We present the analysis of Herschel SPIRE far-infrared (FIR) observations of the z = 2.515 lensed galaxy SMM J163554.2+661225. Combining new 250, 350, and 500 micron observations with existing data, we make an improved fit to the FIR spectral energy distribution (SED) of this galaxy. We find a total infrared (IR) luminosity of L(8--1000 micron) = 6.9 +/- 0.6x10^11 Lsol; a factor of 3 more precise over previous L_IR estimates for this galaxy, and one of the most accurate measurements for any galaxy at these redshifts. This FIR luminosity implies an unlensed star formation rate (SFR) for this galaxy of 119 +/- 10 Msol per yr, which is a factor of 1.9 +/- 0.35 lower than the SFR derived from the nebular Pa-alpha emission line (a 2.5-sigma discrepancy). Both SFR indicators assume identical Salpeter initial mass functions (IMF) with slope Gamma=2.35 over a mass range of 0.1 - 100 Msol, thus this discrepancy suggests that more ionizing photons may be necessary to account for the higher Pa-alpha-derived SFR. We examine a number of scenarios and find that the observations can be explained with a varying star formation history (SFH) due to an increasing star formation rate (SFR), paired with a slight flattening of the IMF. If the SFR is constant in time, then larger changes need to be made to the IMF by either increasing the upper-mass cutoff to ~ 200 Msol, or a flattening of the IMF slope to 1.9 +/- 0.15, or a combination of the two. These scenarios result in up to double the number of stars with masses above 20 Msol, which produce the requisite increase in ionizing photons over a Salpeter IMF with a constant SFH.Comment: 9 pages, 4 figures, 1 table; Accepted for publication in the Astrophysical Journa
    corecore