7,900 research outputs found

    Masses and Interactions of q-Fermionic Knots

    Full text link
    The q-electroweak theory suggests a description of elementary particles as solitons labelled by the irreducible representations of SU_q(2). Since knots may also be labelled by the irreducible representations of SU_q(2), we study a model of elementary particles based on a one-to-one correspondence between the four families of Fermions (leptons, neutrinos, (-1/3) quarks, (2/3) quarks) and the four simplest knots (trefoils). In this model the three particles of each family are identified with the ground and first two excited states of their common trefoil. Guided by the standard electroweak theory we calculate conditions restricting the masses of the fermions and the interactions between them. In its present form the model predicts a fourth generation of fermions as well as a neutrino spectrum. The same model with q almost equal to 1 is compatible with the Kobayashi-Maskawa matrix. Depending on the test of these predictions, the model may be refined.Comment: 40 pages, 2 figures, latex forma

    Light environment - A. Visible light. B. Ultraviolet light

    Get PDF
    Visible and ultraviolet light environment as related to human performance and safety during space mission

    Are Bosonic Replicas Faulty?

    Full text link
    Motivated by the ongoing discussion about a seeming asymmetry in the performance of fermionic and bosonic replicas, we present an exact, nonperturbative approach to zero-dimensional replica field theories belonging to the broadly interpreted "beta=2" Dyson symmetry class. We then utilise the formalism developed to demonstrate that the bosonic replicas do correctly reproduce the microscopic spectral density in the QCD inspired chiral Gaussian unitary ensemble. This disproves the myth that the bosonic replica field theories are intrinsically faulty.Comment: 4.3 pages; final version to appear in PR

    Dedication

    Get PDF

    Analytical Results for a Single-Unit System Subject To Markovian Wear and Shocks

    Get PDF
    This thesis develops and analyzers a mathematical model for the reliability measures of a single-unit system subject to continuous wear due to its operating environment and randomly occurring shocks that inflict a random amount of damage to the unit. Assuming a Markovian operating environment and shock arrival mechanism, Laplace-Stieltjes transform expressions are obtained for the failure time distribution and all of its moments. Moreover, an analytical expression is derived for the long-run availability of the single-unit system when it is subject to an inspect-and-replace maintenance policy. The analytical results are illustrated, and their results compared with those of Monte Carlo-simulated failure data. The numerical results indicate that the reliability measures may be accurately computed via numerical inversion of the transform expressions in a straightforward manner when the input parameters are known a priori. In stark contrast to the simulation model which requires several hours to obtain the reliability measures, the analytical procedure computes the same measures in only a few seconds

    THE BRETHEREN AT LAW AND AT WAR: AN ESSAY

    Get PDF

    Evolution of Lyman Alpha Galaxies: Stellar Populations at z ~ 0.3

    Full text link
    We present the results of a stellar population analysis of 30 Lyman alpha emitting galaxies (LAEs) at z ~ 0.3, previously discovered with the Galaxy Evolution Explorer (GALEX). With a few exceptions, we can accurately fit model spectral energy distributions to these objects, representing the first time this has been done for a large sample of LAEs at z < 3, a gap of ~ 8 Gyr in the history of the Universe. From the 26/30 LAEs which we can fit, we find an age and stellar mass range of 200 Myr - 10 Gyr and 10^9 - 10^11 Msol, respectively. These objects thus appear to be significantly older and more massive than LAEs at high-redshift. We also find that these LAEs show a mild trend towards higher metallicity than those at high redshift, as well as a tighter range of dust attenuation and interstellar medium geometry. These results suggest that low-redshift LAEs have evolved significantly from those at high redshift.Comment: Accepted for publication in the Astrophysical Journal. Replaced with accepted version. Eight pages, four figures, in emulateapj forma

    Collapse of Charge Gap in Random Mott Insulators

    Full text link
    Effects of randomness on interacting fermionic systems in one dimension are investigated by quantum Monte-Carlo techniques. At first, interacting spinless fermions are studied whose ground state shows charge ordering. Quantum phase transition due to randomness is observed associated with the collapse of the charge ordering. We also treat random Hubbard model focusing on the Mott gap. Although the randomness closes the Mott gap and low-lying states are created, which is observed in the charge compressibility, no (quasi-) Fermi surface singularity is formed. It implies localized nature of the low-lying states.Comment: RevTeX with 3 postscript figure
    • …
    corecore