1,085 research outputs found
Microwave ISM Emission Observed by WMAP
We investigate the nature of the diffuse Galactic emission in the Wilkinson
Microwave Anisotropy Probe (WMAP) temperature anisotropy data. Substantial
dust-correlated emission is observed at all WMAP frequencies, far exceeding the
expected thermal dust emission in the lowest frequency channels (23, 33, 41
GHz). The WMAP team (Bennett et al.) interpret this emission as dust-correlated
synchrotron radiation, attributing the correlation to the natural association
of relativistic electrons produced by SNae with massive star formation in dusty
clouds, and deriving an upper limit of 5% on the contribution of Draine &
Lazarian spinning dust at K-band (23 GHz). We pursue an alternative
interpretation that much, perhaps most, of the dust-correlated emission at
these frequencies is indeed spinning dust, and explore the spectral dependence
on environment by considering a few specific objects as well as the full sky
average. Models similar to Draine & Lazarian spinning dust provide a good fit
to the full-sky data. The full-sky fit also requires a significant component
with free-free spectrum uncorrelated with \Halpha, possibly hot (~million K)
gas within 30 degrees of the Galactic center.Comment: ApJ in press (accepted 5 Dec 2003), version 2: corrected typos and
added references. 23 pages, 5 figures, 2 tables. Free-free haze map is
available at http://skymaps.inf
Evidence Of Dark Matter Annihilations In The WMAP Haze
The WMAP experiment has revealed an excess of microwave emission from the
region around the center of our Galaxy. It has been suggested that this signal,
known as the ``WMAP Haze'', could be synchrotron emission from relativistic
electrons and positrons generated in dark matter annihilations. In this letter,
we revisit this possibility. We find that the angular distribution of the WMAP
Haze matches the prediction for dark matter annihilations with a cusped density
profile, in the inner kiloparsecs. Comparing the
intensity in different WMAP frequency bands, we find that a wide range of
possible WIMP annihilation modes are consistent with the spectrum of the haze
for a WIMP with a mass in the 100 GeV to multi-TeV range. Most interestingly,
we find that to generate the observed intensity of the haze, the dark matter
annihilation cross section is required to be approximately equal to the value
needed for a thermal relic, cm/s. No
boost factors are required. If dark matter annihilations are in fact
responsible for the WMAP Haze, and the slope of the halo profile continues into
the inner Galaxy, GLAST is expected to detect gamma rays from the dark matter
annihilations in the Galactic Center if the WIMP mass is less than several
hundred GeV.Comment: 4 pages, 3 figure
Microwave ISM Emission in the Green Bank Galactic Plane Survey: Evidence for Spinning Dust
We observe significant dust-correlated emission outside of H II regions in
the Green Bank Galactic Plane Survey (-4 < b < 4 degrees) at 8.35 and 14.35
GHz. The rising spectral slope rules out synchrotron and free-free emission as
majority constituents at 14 GHz, and the amplitude is at least 500 times higher
than expected thermal dust emission. When combined with the Rhodes (2.326 GHz),
and WMAP (23-94 GHz) data it is possible to fit dust-correlated emission at
2.3-94 GHz with only soft synchrotron, free-free, thermal dust, and an
additional dust-correlated component similar to Draine & Lazarian spinning
dust. The rising component generally dominates free-free and synchrotron for
\nu >~ 14 GHz and is overwhelmed by thermal dust at \nu > 60 GHz. The current
data fulfill most of the criteria laid out by Finkbeiner et al. (2002) for
detection of spinning dust.Comment: ApJ in press. 26 pages, 11 figures, figures jpeg compressed to save
spac
Sustainability assessment of a single-use plastics ban
Governments around the world are introducing single-use plastics bans to alleviate plastic marine pollution. This paper investigates whether banning single-use plastic items is an appropriate strategy to protect the environment. Product life cycle assessment was conducted for single-use plastic and single-use non-plastic alternatives. The life cycle impacts of the two product categories were compared and scaled according to EU consumption of 2016. The results show that a single-use plastics ban would decrease plastic marine pollution in the EU by 5.5% which equates to a 0.06% decrease globally. However, such a ban would increase emissions contributing to marine aquatic toxicity in the EU by 1.4%. This paper concludes that single-use items are harmful to the environment regardless of their material. Therefore, banning or imposing a premium price on single-use items in general and not only single-use plastic items is a more effective method of reducing consumption and thereby pollution. The plastics ban only leads to a small reduction of global plastic marine pollution and thus provides only a partial solution to the problem it intends to solve.</jats:p
On the Complexity of Temporal-Logic Path Checking
Given a formula in a temporal logic such as LTL or MTL, a fundamental problem
is the complexity of evaluating the formula on a given finite word. For LTL,
the complexity of this task was recently shown to be in NC. In this paper, we
present an NC algorithm for MTL, a quantitative (or metric) extension of LTL,
and give an NCC algorithm for UTL, the unary fragment of LTL. At the time of
writing, MTL is the most expressive logic with an NC path-checking algorithm,
and UTL is the most expressive fragment of LTL with a more efficient
path-checking algorithm than for full LTL (subject to standard
complexity-theoretic assumptions). We then establish a connection between LTL
path checking and planar circuits, which we exploit to show that any further
progress in determining the precise complexity of LTL path checking would
immediately entail more efficient evaluation algorithms than are known for a
certain class of planar circuits. The connection further implies that the
complexity of LTL path checking depends on the Boolean connectives allowed:
adding Boolean exclusive or yields a temporal logic with P-complete
path-checking problem
A determination of the Spectra of Galactic components observed by WMAP
WMAP data when combined with ancillary data on free-free, synchrotron and
dust allow an improved understanding of the spectrum of emission from each of
these components. Here we examine the sky variation at intermediate latitudes
using a cross-correlation technique. In particular, we compare the observed
emission in 15 selected sky regions to three ``standard'' templates.
The free-free emission of the diffuse ionised gas is fitted by a well-known
spectrum at K and Ka band, but the derived emissivity corresponds to a mean
electron temperature of ~4000-5000K. This is inconsistent with estimates from
galactic HII regions. The origin of the discrepancy is unclear.
The anomalous emission associated with dust is clearly detected in most of
the 15 fields studied; it correlates well with the Finkbeiner et al. model 8
predictions (FDS8) at 94 GHz, with an effective spectral index between 20 and
60GHz of -2.85. Furthermore, the emissivity varies by a factor of ~2 from cloud
to cloud. A modestly improved fit to the anomalous dust at K-band is provided
by modulating the template by an estimate of the dust colour temperature,
specifically FDS8*T^n. We find a preferred value n~1.6.
The synchrotron emission steepens between GHz frequencies and the WMAP bands.
There are indications of spectral index variations across the sky but the
current data are not precise enough to accurately quantify this from region to
region. Our analysis of the WMAP data indicates strongly that the
dust-correlated emission at the low WMAP frequencies has a spectrum which is
compatible with spinning dust; we find no evidence for a synchrotron component
correlated with dust (abridged).Comment: 18 pages, 6 figures, revised version uses cross-correlation method
rather than T-T method. Paper re-organised and sent back to refere
Pseudo-Dipole Signal Removal from WMAP Data
It is discovered in our previous work that different observational
systematics, e.g., errors of antenna pointing directions, asynchronous between
the attitude and science data, can generate pseudo-dipole signal in full-sky
maps of the cosmic microwave background (CMB) anisotropy published by The
Wilkinson Microwave Anisotropy Probe (WMAP) team. Now the antenna sidelobe
response to the Doppler signal is found to be able to produce similar effect as
well. In this work, independent to the sources, we uniformly model the
pseudo-dipole signal and remove it from published WMAP7 CMB maps by model
fitting. The result demonstrates that most of the released WMAP CMB quadrupole
is artificial.Comment: V3: using WMAP7 dat
g-factor of a tightly bound electron
We study the hyperfine splitting of an electron in hydrogen-like . It is found that the hfs energy splitting can be explained well by
considering the g-factor reduction due to the binding effect of a bound
electron. We determine for the first time the experimental value of the
magnetic moment of a tightly bound electron.Comment: 6 pages, Latex, Phys. Rev. A in pres
A Limit on the Polarized Anomalous Microwave Emission of Lynds 1622
The dark cloud Lynds 1622 is one of a few specific sites in the Galaxy where,
relative to observed free-free and vibrational dust emission, there is a clear
excess of microwave emission. In order to constrain models for this microwave
emission, and to better establish the contribution which it might make to
ongoing and near-future microwave background polarization experiments, we have
used the Green Bank Telescope to search for linear polarization at 9.65 Ghz
towards Lynds 1622. We place a 95.4% upper limit of 88 micro-Kelvin (123
micro-Kelvin at 99.7 confidence) on the total linear polarization of this
source averaged over a 1'.3 FWHM beam. Relative to the observed level of
anomalous emission in Stokes I these limits correspond to fractional linear
polarizations of 2.7% and 3.5%.Comment: replaced with version accepted by Ap
- …