292 research outputs found

    How do signers mark conditionals in German Sign Language? Insights from a Sentence Reproduction Task on the use of nonmanual and manual markers

    Get PDF
    This paper presents the results of a Sentence Reproduction Task (SRT) investigating conditional sentences in German Sign Language (DGS). We found that participants mark conditional sentences in DGS by systematically using different non-manual markers on the antecedent and the consequent. In addition, these non-manual markers were frequently used in combination with one or two manual signs. However, the manual markers were omitted in the test sentences, i.e., the input stimuli the participants were asked to reproduce. The results of our experimental study are, on the one hand, consistent with descriptions of manual and non-manual strategies used to mark conditional sentences in different unrelated sign languages. On the other hand, our findings provide new insights on the multi-layered marking of conditional sentences in DGS

    Rock mechanical properties of immature, organic-rich source rocks and their relationships to rock composition and lithofacies

    Get PDF
    Mechanical properties of layered rocks are critical in ensuring wellbore integrity and predicting natural fracture occurrence for successful reservoir development, particularly in unconventional reservoirs for which fractures provide the main pathway for hydrocarbon flow. We examine rock mechanical properties of exceptionally organic-rich, immature source rocks from Jordan, and understand their relationships with rock mineral composition and lithofacies variations. Four depositional microfacies were identified: organic-rich mudstone, organic-rich wackestone, silica-rich packstone and fine-grained organic-rich wackestone. The four types exhibit various mineralogical compositions, dominated by carbonates, biogenic quartz and apatite. Leeb hardness ranges between 288 and 654, with the highest average values occurring in silica-rich packstone and organic-rich mudstone. The highest uniaxial compressive strength (derived from the intrinsic specific energy measured using an Epslog Wombat scratch device), and compressional- and shear-wave velocities were measured in organic-rich mudstones (140 MPa, 3368 m s−1 and 1702 m s−1, respectively). Porosity shows higher average values in organic-rich wackestones and fine-grained organic-rich wackestones (33–35%). Silica-rich packstone and organic-rich mudstone have brittle properties, while organic-rich wackestone and fine-grained organic-rich wackestone are ductile. High silica contents are correlated positively with brittleness. A strong hardness–brittleness correlation suggests that Leeb hardness is a useful proxy for brittleness. Our study allows a better understanding of the relationships between lithofacies, organic content and rock mechanical properties, with implications for fracking design to well completion and hydrocarbon production. Further work involving systematic sampling and a more rigorous study is still required to better understand the spatial distribution of target lithologies and their mechanical properties

    Saudi Arabian basalt/CO2/brine wettability: Implications for CO2 geo-storage

    Get PDF
    The geological sequestration of carbon dioxide, including mineralization in basaltic formations, has been identified as a promising method of attaining a low-carbon economy. However, successful CO2 storage depends on both the CO2 wettability of the basaltic rocks and the basalt rock-fluid interfacial interactions. The contact angles of brine/CO2 systems for Western Australian (WA) and Iceland basalts have been recently reported in the literature. However, contact angle datasets for evaluating the CO2 wettability of Saudi Arabian (SA) basalt have not been previously reported. Moreover, there is limited information on the impact of organic acids on the wettability of the basalt/CO2/brine system. In the present study, the contact angles of supercritical CO2/brine systems on SA basalt are measured at temperatures of 298 and 323 K, and at various pressures of 0.1 – 20 MPa in the absence and presence of organic acid (10 − 2 mol/L stearic acid). Various analytical methods are used to characterize the SA basalt surface, and the wetting behavior of the SA basalt is compared with that of the WA and Iceland basalts. The quantity of CO2 that can be safely trapped underneath the SA basalt (in terms of CO2 column height) is then computed from the experimental data. At the highest tested temperature and pressure (20 MPa and 323 K), the pure SA basalt is found to remain strongly water-wet, with advancing (θa) and receding (θr) contact angles of 46.7° and 43.2°, respectively, whereas the Iceland basalt becomes moderately water-wet (θa = 85.1° and θr = 81.8°), and the WA basalt becomes CO2-wet (θa = 103.6° and θr = 96.1°). However, the organic-aged SA basalt attains a CO2-wet state (θa = 106.8° and θr = 95.2°). In addition, the CO2 column height of the pure SA basalt is higher than that reported for the WA and Iceland basalts. Further, at 323 K, the CO2 column height decreases from 835 m at 5 MPa to −957 m at 20 MPa. These results suggest that there could be both freer plumb and lateral movement of CO2 into the SA basalt in the presence of organic acid, thus resulting in lower residual and mineral trapping capacities, and fewer eventual leakages of CO2, across the geological formation

    Sommerfeld Enhancement of DM Annihilation: Resonance Structure, Freeze-Out and CMB Spectral Bound

    Full text link
    In the last few years there has been some interest in WIMP Dark Matter models featuring a velocity dependent cross section through the Sommerfeld enhancement mechanism, which is a nonrelativistic effect due to massive bosons in the dark sector. In the first part of this article, we find analytic expressions for the boost factor for three different model potentials, the Coulomb potential, the spherical well and the spherical cone well and compare with the numerical solution of the Yukawa potential. We find that the resonance pattern of all the potentials can be cast into the same universal form. In the second part of the article we perform a detailed computation of the Dark Matter relic density for models having Sommerfeld enhancement by solving the Boltzmann equation numerically. We calculate the expected distortions of the CMB blackbody spectrum from WIMP annihilations and compare these to the bounds set by FIRAS. We conclude that only a small part of the parameter space can be ruled out by the FIRAS observations.Comment: 15 pages, 15 figures, version accepted by JCA

    Self-consistent modelling of pulsar magnetospheres

    Get PDF
    We report on some progress that we have achieved by numerically modelling the magnetosphere of an aligned rotator where the rotation axis is parallel to the magnetic axis of the neutron star. Here, the unipolar induction, which should be responsible for populating the magnetosphere with charged particles pulled out from the neutron star surface via field emission can be studied in purity, whereas electromagnetic wave effects are neglected

    Towards a self-consistent modelling of pulsar magnetospheres

    Get PDF
    The numerical modelling of the general case of an oblique rotator is a very complicated time-dependent 3-dimensional problem and in its full extent probably outside the capicity of present.day computers. A considerable simplification occurs if one can assume that the essential effects may be understood by modelling the magnetosphere of an aligned rotator (where the rotation axis is parallel to the magnetic axis of the neutron star). This assumption is only reasonable for small obliqueness, since by this approach all electromagnetic wave effects are not taken into account

    Particle motion in pulsar magnetospheres

    Get PDF
    This report discusses some new results we found in studying the trajectories of single charged particles in the vacuum magnetosphere of a pulsar using the oblique rotator model. We believe that investigations of individual particles in the vicinity of the star can be useful for a better understanding of some fundamental problems of pulsar physics, e.g. the global structure of the magnetosphere or the pulsar radiation

    Enhancing the CO2 trapping capacity of Saudi Arabian basalt via nanofluid treatment: Implications for CO2 geo-storage

    Get PDF
    Mineralization reactions in basaltic formations have gained recent interest as an effective method for CO2 geo-storage in order to mitigate anthropogenic greenhouse gas emissions. The CO2/rock interactions, including interfacial tension and wettability, are crucial factors in determining the CO2 trapping capacity and the feasibility of CO2 geological storage in these formations. The Red Sea geological coast in Saudi Arabia has many basaltic formations, and their wetting characteristics are rarely reported in the literature. Moreover, organic acid contamination is inherent in geo-storage formations and significantly impacts their CO2 geo-storage capacities. Hence, to reverse the organic effect, the influence of various SiO2 nanofluid concentrations (0.05–0.75 wt%) on the CO2-wettability of organic-acid aged Saudi Arabian (SA) basalt is evaluated herein at 323 K and various pressures (0.1–20 MPa) via contact angle measurements. The SA basalt substrates are characterized via various techniques, including atomic force microscopy, energy dispersive spectroscopy, scanning electron microscopy, and others. In addition, the CO2 column heights that correspond to the capillary entry pressure before and after nanofluid treatment are calculated. The results show that the organic acid-aged SA basalt substrates become intermediate-wet to CO2-wet under reservoir pressure and temperature conditions. When treated with SiO2 nanofluids, however, the SA basalt substrates become weakly water-wet, and the optimum performance is observed at an SiO2 nanofluid concentration of 0.1 wt%. At 323 K and 20 MPa, the CO2 column height corresponding to the capillary entry pressure increases from −957 m for the organic-aged SA basalt to 6253 m for the 0.1 wt% nano-treated SA basalt. The results suggest that the CO2 containment security of organic-acid-contaminated SA basalt can be enhanced by SiO2 nanofluid treatment. Thus, the results of this study may play a significant role in assessing the trapping of CO2 in SA basaltic formations

    Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    Get PDF
    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector
    • …
    corecore