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SELF-CONSISTENT MODELLING OF PULSAR MAGNETOSPHERES 

The problem - fundamental to the physics of pulsars - of determining the global 
structure of the magnetospheres of rapidly rotating, strongly magnetized neutron 
stars has not yet been solved self-consistently (for a review cf. [1 D. We report on some 
progress that we have achieved by numerically modelling the magnetosphere of an 
aligned rotator where the rotation axis is parallel to the magnetic axis of the neutron 
star. Here, the unipolar induction, which should be responsible for populating the 
magnetosphere with charged particles pulled out from the neutron star surface via 
field emission can be studied in purity, whereas electromagnetic wave effects are 
neglected. In the stationary, axially symmetric case the electromagnetic fields E and 
B in the pulsar magnetosphere can be described (in cylindrical coordinates p,cp,z) 
by the electrostatic potential ~(p, z), the magnetic flux function W(p, z) and the 
poloidal magnetic field B~(p,z): E = -V~ and B = (l/p)V'II x e~ + B~e~. The 
charge density Pe and the current density j determine the electric potential via the 
Poisson equation and the magnetic field via Ampere's law which here read in suitable 
Wlits such that all quantities are dimensionless: 

.6.~ = -Pe; 

! (pB~) = -pj,; 

(la) 

(lb) 

The magnetosphere is formed by a collisionless plasma, in which the particles are 
expected to be extremely relativistic due to the huge electric and magnetic fields (the 
unipolar induction voltage between pole and equator of the neutron star is typically 
ofthe order 1017_101S V). The charge and current densities are therefore derived from 
the zeroth and first momentwn of the particle distribution function fer, p) which is 
detennined by the Vlasov equation 

v 8! + ~(E + v x B + radiation)!] = 0 
iJr 8p dampmg 

(2) 

The velocity v is given by v = pi ..j(e2 + p2), where the dimensionless parameter e 
is defined by e = 2mc2 J(eBoa20,), i.e. by the ratio between rest mass energy and 
Wlipolar induction energy (Bo is the polar magnetic field strength, a is the radius 
and n is the angular velocity of the neutron star). Because typical values for e 
are extremely small (e '"" _10- 12 for electrons, e '"" 10-9 for protons), the quantity 
r = e'Y should be of order unity, at least if the radiation reaction during phases 
of acceleration can be neglected. This, however, is not the case as can be seen by 
studying the trajectories of particles in realistic pulsar vacuwn fields. The Lorentz­
Dirac equation of motion in the Landau approximation, can be written as (lei <t: 1) 

V=fF; r=E.v-Dor'F' with F=E+vxB-v(E · v) (3) 

For typical pulsar parameters the value of the dimensionless damping constant Do = 
e21(61rEo)f!J(mc3e3) is in the order of Do'" _1014 for electrons, and Do 'V 10 for 
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protons. Thus, at least for the electrons, the radiation reaction force dominates 
the particle motion. Large values of IDol imply that the factor of Do in (3) always 
remains very smallj this leads us to the assumption, which we confirmed by numerical 
integration of eqs. (3) (d. [2]), that during the motion the condition F ~ 0 is fulfilled, 
which means that the radiation reaction is locally minimized along the trajectory. 
This is a condition for the velocity and yields, for given E and B fields 

V= B,!p,[EXB+ ~(E.B)B+PE] (4a) 

with 

p' = ~(E' - B') + ~ [(E' - B')' + 4(E· B)'] I ( 4b) 

i.e. we obtain a local velocity field v = veE, B) and thus a fluid-like picture for the 
particle motions in the magnetosphere. The main characteristics of this damping- free 
motion is, that the particles come to rest in surfaces where E· B = O. 
Based on these results, the task to detennine a self-consistent solution is simpler than 
before, but still difficult due to the great non-linearity of the problem. Our approach 
is based on the idea to start from the vacuum solution and to fill up the magnetosphere 
with the particles which are pulled out from the neutron star surface. This is not a real 
time-dependent calculation, since we assume that the electric field is always described 
by an electrostatic potential, but for transporting the charge with the velocity (4) we 
need to solve the time-dependent continuity equation p + div(pv) = 0 and therefore 
E cannot be omitted in Ampere's law. Thus eqs. (lb) have to be replaced by 

(~ _ ~!!.)(pB ) = p(Oj, _ Ojp). 
pop ~ op oz 

(5) 

In summary, we solve at each time step the elliptic equations (la) with Dirichlet 
boundary conditions (the change of (lI at infinity has also to be derived from Ampere's 
law) and equation (5) with the von Neumann boundary condition o(pB~)/or = pj, 
on the star's surface, where the simple emission law j = (J" Ell is assumed. The three 
elliptic equations are solved by successive over-relaxation (SOR) in a vectorizable 
checkerboard scheme. For the continuity equation an explicit discretization in time 
with 2-dimensional Flux Corrected Transport is used in order to preserve steep gra­
dients in the charge density. 
We start with the vacuum fields of an uncharged aligned rotator, i.e . an electric 
quadrupole and a magnetic dipole resulting in E· B < 0 everywhere. Therefore, only 
negative particles can be emitted and then transported along the magnetic field lines 
towards the equator where they accumulate. This causes a change in the electric field 
such that the E . B = 0 surface rises from the equator towards the polar field line 
forcing the negative particles to follow it. As soon as E . B > 0 at some part of the 
star's surface positive particles can enter the magnetosphere and stream out along the 
equator. After about one revolution (T=6.25) two regions of charged particles (the 
negative ones around the pole, the positive ones around the equator) separated by 
a vacuum gap have fonned which then develop into a charge separated pulsar wind. 
The charge densities after 30 revolutions which are shown in Figs. 1 and 2 represent 
an almost stationary configuration. The electric field (Fig. 3) evolves as to achieve 
E· B '" 0 in the wind zone (Fig. 4) . The poloidal magnetic field essentially does 
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Fig.1: Density of the negative particles 
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Fig.2: Density of the positive particles 
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not change, hut the toroidal field shows huge variations along the surfaces limiting 
the populated regions. The neutron star becomes positivly charged because of the 
negative particles leaving the slar at the beginning. The positive particles soon catch 
up and after about one revolution the currents of positive and negative particles out 
of the star exactly match each other. Lateran the amount of charge for each particle 
species as well as the total currents into and out of the magnetosphere approach a 
constant value. 
For the first time in pulsar magnetospheric theory it seems that a stationary self­
consistent solution for the aligned rotator has been found by quasi-time-dependent 
simulation. Further physical implications like the dependence of the solution on the 
emissivity a of the neutron star and on the rotation frequency (ro) still have to be 
studied before the model can be extended for the slightly oblique rotator. 
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