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TOWARDS Ii SELF-CONSISTENT MODELLING OF PULSAR MAGNETOSPHERES 

H. Herold, T . Enl. B. Finkbeiner and H. Ruder 

Ltbrstuhl fUt Tb!Orttische Astropbysik der Univenitit Tubingfo , F.R-G. 

Since their discovery almost twenty years ago, t he radio 

pulsars ~ sc\'tral bundttds Uf kllown today - ba\'e been fas­

cilla.tUl, objt'Cu for astronomers a.ad ulrophysici5lS, although 

(or because) until now only a poor undentallding of theM o~ 

jecu bas been obtained . 00 some global ideas, namely that a 

pulsar is a r",pidly rotating, strongly magofliud neutroo stu 

and tbat the pu\sn &l'e product'll by 5Omf' sort of light-bouse d · 
feet, there exists geoeral agrtt'meot , hut self·consistent models 

ate st ill lading (for a review d . (Ill . Since from Ihf energetic 

point of view the radio emiMion !IOeem, to be only a small part 

ohhe totall'ol'rgy balance of a pulsar magnetosphere, all local 

models for the pubt emission mechanism may be qu~tJonable 

as long as tbere do oat elUSt any reasonable models for the 

global magnetospheric st ructu re. 

Tbe numerical modelliog of the geoeral cue of an oblique 

rotator is a \'uy complinl.ted time-dependent 3-dimeruional 

problem a.nd in it s full extent probably outside tbe cap&City of 

present.day computer!. A considerable simplification OCCUr! if 

oDe can assume that the essential effects may be understood 

by modelling the magnetosphere of an aligned rOlator ( where 

the rotation axis is parallel to the magnelic uis of the neulrOD 

star ). This MSumption is only reasonable fo r small oblique­

ness, since by this approach all elKtromagnetic wa\'e efftoeu 

a re not taken into &Ccount An advantage. howe~r . is that the 

unipolar induction . which shaull! be responsible fOT populat· 

Lng tbe magnuosphere wit b charged particlt-S puUtd out from 

the neut ron star surface via lil'ld l'mission [21,can bl' studied in 

purity. 

Thus. the structure of a stationary. wally symmetric 

pui.sar magnetospbere is gO\'l'rned by the following equations. 

The electromagnetic fields E and B can be described { In 

cylindrical coordinates p.<jJ,: ) by the electrostat ic potential 

"'(p.:). the mat::netic flux funct ion ~(p. =) and the poloidal 

magnetic field B .. (p.z) : 

E = - t'4>; I 
B = - t'~" e .. + 8 ... e ... 

p 
( I ) 

Charge density Pc and cunl'nt density j determin e the elKlric 

potential via the Poisson equation and the ma~l'tic field via 

Ampere's law which read here (all quantities ha~ been made 

dimensionle$ll by appropriate units ): 

• ih (pH.,) = - pJ. 

(20) 

(2b) 

(lc) 

The magnetosphere is formP<! by .. collisionltsa pluma. in which 

the par tic les are expt'CtP<! to be extremely relativistic due to 

the huge elKtnc and magnetic fields ( the unipolar Induction 

\'oltage het ..... ten pole and C'quator of the neutron star is typi· 

cally lOll _IO L.\, ) Thus charge AlLd current density a rt gLven 

by integtab or the partirle dist ribut ion funct ion !(r.p) over 

momentum space 

P. = / ! ( r . p)~p; j ,. / ! (r . p )vd'p . (3) 

wheteas the distrIbution function is delermintd by the VI~ 

equation 

v 81 +!... [I E + v x B + radiat.ioll )! ] = 0 
Or 8 p dampIng ( ' ) 

The veloc. ty v is gn'en by y = p/";(t 7 + p l l. where thl' di · 

ml'nll,onlf'M parAmeter ~ .sdl'fined hy ~ = 2m~/(elloC12n) . L e 

by thl' rat io ~twl'1'n rest mass en('Tgy and unipolar induo.on 

energy ( Do IS the fronn'Ln magnetIC firld . a is thr ri1(iLus. n 
is th l" angtlla r velocity of th i' nl'u tron star I Ilffaust tYPiCal 

\..uues for ( a re extrl'ml'ly small ( f __ 10- 12 ror eIKtron~. 

f _ 10 - 1 for protons J. one can condude that the pArticl" 

ga.in relativistir energies ",; th Lorenu factors l' "" (l _ ,.2)-L/2 

of the order of I /ld . ThI'T('forl' . thl" Quantity r == ! "r should be 

of order 1. at least If the radiatLon ruction dunnjl; phases of 

acceierallon ran bl' neglK1M Th'Jl I ~ not the ('a.st. hov."f'\·('T. as 

can be seen by studying the trajr-flories of partlClt"S in reall!!ic 

pulsar fields The fquations of motIon . I e the Lorenh·Di ru 

equation ,n thi' Landau approXLmation ( d 13]). can bl' wntu'n 

a.s ( prO\'ided thai kl < I 

. I r 
v ::: r . (5) 

with r = E + v " B - y (E · v ), by numencally IOtl'grating 

these equations. one CAn dKLde on the role of radiAtion damp­

IIlg. Wt have performed su('h inlegrallons. but also without 

conSidering the exph('it solu tions of (S), it IS understandable 

that the radLation reut,on is very important . since the dimen· 

sionless dampmg con!!ant Do = e2/(611'(0) O/(mclt') takes -

for typical pulsar parameters - t he values Do '" - 10" for 

e1Ktrons, and Do - 10 for protons. ThUll. at least for the 

electrons, the radiation rculion force dommates the pallidI' 

motion An exampie for t he IILtegration of I'fls .Ui) IS shown in 

fig I . ..... here corr~pond ing traj('(tOflcs without and with radio 

atLon damping are comparM . 

Large values of IDol imply th at tht' factor of Do in (.S) 

u!ma.ins always \'ery 5mall; this leads Ull t o the ohservation, 
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Fig.l- Comparison of an undamped ( Do "" 0 ) and a radia.­
lively damped ( IDol =. 10 ) particle trajectory in a magnetic 
dipole and an electric monopole + quadrupole field. The radi­
ation reaction leads to the capture ofthe particle in tbe region 
E·Bs::::O . 

which haa b~D confirmed Dllmerically, tbat during the motion 

the condition 

F = E + V :>I B - v (E· v) <::: 0 (6) 

IS fulfilled, which means that Iht' radiation reaction is locally 

minimized along the trajectory. F "Iuation (6) is a condition for 

the velocity and yields, for gh-en E- and B-fields (d. 14]), 

v = B1: p2{E x B+ ~(E . B)B+ PEl (1a) 

with 

I e WI:' &('1 a local v('locily fil'ld v = vIE . B I and thus a fluid ­

like plnur(' for Ih(' parude motions In the magnetosphere. 

Based on Ihes£' results , the task to deterffiLDe a self­

cons~tent solution is simpler than before, but still difficult 

due to th(' great non·lIneanty of thl' probl('m. Our approach 

is bll.'>t'd on tht id(,3 to start from IhE' vacuum solution and to 

fill up thE' magnt'lospheu' wilh IhE' particles which are pulled 

out from the neutron star surface. Tbis i~ not a real time­

dependent calculallon, since we u"urne that thE' electric field 

is always de!ICribed by an electrostatic potential, but we need 

the time-dependent continuity equation and tberefore t can­

not be omitted in Amp('TI"s law. Thus th(' eqs.{2c) hilve to be 

repia.rro by 

( 2")1 I (8)< 8),) 6 - pap pB.., = p 8p - 8z . (8) 

In summary, we solv(' at each tim(' step the Poisson equation 

(211.) and the elliptic equation (2b) with Dirichlet boundary 

conditions and th(' equation (8) with the von Neumann bound­

ary condItion 8{pBY')/8r = PU on the star's surface. A simple 

emi!lSion law is assumed ( namely J ex EU ), and for the continu­

ity equation, which the particle density is dl.'termined from, an 

explicit discretization in time (with 2·dlmensional Flux Cor­

rected Transport 15)) III used. The spatial discreti:tation is made 

in the sphencal coordinales ( r. d). actually we have an equidis­

tant grid for" = (r - ro l/(r +('0) ( ro = no/c. Co can be chosen 

suitably) and po = cos 8. Thl.' three elliptiC equations are solved 

by successive ov(,r-relaxation (SOR) In a vectorizable chffker­

board scheme. 
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Fig.2: The electr08tatic potential linea of the vacuum field con· 
figuration of an uncharged homogeneously magnetized neutron 
star (our starting point). 
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Fig.3: The electrostatIc pot('ntial lines at the tim(' j "" 2-./0 
for a small emission rate of th(' surface. The charg(' in the 
magnetospher(' has already deformed the vacuum electric field 
to som(' extent. 

Starting from the \7LCuum fields ~ magnetic dipole + 
elfftric quadrupole (d . fig.2 ) - , at the beginning we assume'<! 

tbe currenl coming out of the star to be relatively small. In the 

first pbases of the lime integration, only negative particles are 

emitted leading to a noticeable change of the toroidal magnetic 

field BY'; at this stage the electric field is altered only slightly. 

Later on, the developing charge in the magnetosphere grad­

ually deforms the electrostatic pot('otial io such a way that 

positive particles can be pulled out from the star. The el('etro­

static potential at that stage (after one revolution) is IIhown 

in fig .a. Afterwards the den!ity of positive particles increases, 

especially near the equator, but one cannot conclude yet that 

a corotating :tone is forming. since the evolution of the magne­

tospheric charge distribution is far from being completed. 

In subsequent runs. we tested what is happening if the 

surface emission rate IS enhanced to a more realistic value. 

This lead~, of cour~ . to stronger effects in a shorter time, but 

conc1usi\'e statements about the results cannot be made yet. 
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