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Since their discovery almost twenty years ago, the radio
pulsars — several hundreds are known today — have been fas-
cinating objects for astronomers and astrophysicists, although
(or because) until now only a poor understanding of these ob-
jects has been obtained. On some global ideas, namely that a
pulsar is a rapidly rotating, strongly magnetized neutron star
and that the pulses are produced by some sort of light-house ef-
fect, there exists general agreement, but self-consistent models
are still lacking (for a review cf. [1]). Since from the energetic
point of view the radio emission seems to be only a small part
of the total energy balance of a pulsar magnetosphere, all local
models for the pulse emission mechanism may be questionable
as long as there do not exust any reasonable models for the
global magnetospheric structure.

The numerical modelling of the general case of an oblique
rotator is a very complicated time-dependent 3-dimensional
problem and in its full extent probably outside the capacity of
present-day computers. A considerable simplification occurs if
one can assume that the essential effects may be understood
by modelling the magnetosphere of an aligned rotator ( where
the rotation axis is parallel to the magnetic axis of the neutron
star ). This assumption is only reasonable for small oblique-
ness, since by this approach all electromagnetic wave effects
are not taken into account An advantage, however, is that the
unipolar induction, which should be responsible for populat-
ing the magnetosphere with charged particles pulled out from
the neutron star surface via field emission [2]can be studied in
purity.

Thus, the structure of a stationary, axially symmetric
pulsar magnetosphere is governed by the following equations.
The electromagnetic fields E and B can be described ( in
cylindrical coordinates p,,z ) by the electrostatic potential
®{p, z), the magnetic flux function ¥(p,z) and the poloidal
magnetic field B,(p, z):

E=-U8: =-:-'er,+3,,¢, (1)
Charge density p. and current density j determine the electric
potential via the Poisson equation and the magnetic field via
Ampere’s law which read here (all quantities have been made
dimensionless by appropriate units):

A% = ~p, (2a)

(a- E%)@ = =pj, (26)
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The magnetosphere is formed by a collisionless plasma, in which
the particles are expected to be extremely relativistic due to
the huge electric and magnetic ficlds ( the unipolar induction
voltage between pole and equator of the neutron star is typi-
cally 10'7-10'®V ) Thus charge and current density are given
by integrals of the particle distribution function f(r,p) over
momentum space

p.=/."tr-p)af’p: j=/!(r-p)vo"9- (3)

whereas the distnbution function is determined by the Viasov
equation
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The velocity v is given by v = pfm. where the di-
mensionless parameter < 1s defined by « = 2me?/(eBga?(2). 1 e
by the ratio between rest mass energy and unipolar induction
energy ( By s the frozen-in magnetic field, a is the radius, 2
is the angular veloaity of the neutron star ) Because typical
values for ¢ are extremely small ( ¢« ~ -10-1? for electrons,
e ~ 10~? for protons ). one can conclude that the particles
gain relativistic energies with Lorentz factors 7 = (1 — »?)~1/2
of the order of 1/|¢|. Therefore, the quantity I' = < 4 should be
of order 1, at least if the radiation reaction during phases of
acceleration can be neglected This is not the case, however. as
can be seen by studying the trajectories of particles in realistic
pulsar fields The equations of motion. 1 e the Lorentz-Dirac
equation in the Landau approximation ( cf [3]). can be written
as ( provided that || < 1)

o:%r. I'=E v- DyI*F? (5)

with F = E+v x B - v(E v), by numencally integrating
these equations, one can decide on the role of radiation damp-
ing. We have performed such integrations, but also without
considering the exphicit solutions of (5), it 1s understandable
that the radiation reaction is very important, since the dimen-
sionless damping constant Dy = e?/(67¢p) /(mc %) takes —
for typical pulsar parameters — the values Dy ~ -10' for
electrons, and Dy ~ 10 for protons. Thus, at least for the
electrons, the radiation reaction force dominates the particle
motion An example for the integration of eqs.(5) 1s shown in
fig 1, where corresponding trajectonies without and with radi-
ation damping are compared.

Large values of [Dg| imply that the factor of Dy in (5)
remains always very small; this leads us to the observation,
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Fig.1: Comparison of an undamped ( Dy = 0 ) and a radia-
tively damped ( |Dg| = 10 ) particle trajectory in a magnetic
dipole and an electric monopole + quadrupole field. The radi-

ation reaction leads to the capture of the particle in the region
E-B=0.

which has been confirmed numerically, that during the motion
the condition

F=E+vxB-v(E-v)=0 (6)

15 fulfilled, which means that the radiation reaction is locally
minimized along the trajectory. Fquation (6) is a condition for
the velocity and yields, for given E- and B-fields (cf. [4]),

1

V= By pe

[ExB+5(E-B)B + PE| (7a)
with }
P = (6 - B7) + (27 - B+ a8 B)]

1e we get a local velocity field v = v(E,B) and thus a fluid-
like picture for the particle motions in the magnetosphere.

Based on these results, the task to determine a self-
consistent solution is simpler than before, but still difficult
due to the great non-lineanity of the problem. Our approach
is based on the idea to start from the vacuum solution and to
fill up the magnetosphere with the particles which are pulled
out from the neutron star surface. This is not a real time-
dependent calculation, since we assume that the electric field
is always described by an electrostatic potential, but we need
the time-dependent continuity equation and therefore E can-
not be omitted in Ampere’s law. Thus the egs.(2c) have to be
replaced by

(8-22) 0B = (2 - 32). ®)

In summary, we solve at each time step the Poisson equation
(2a) and the elliptic equation (2b) with Dirichlet boundary
conditions and the equation (8) with the von Neumann bound-
ary condition 8(pB,)/dr = pjs on the star’s surface. A simple
emission law is assumed ( namely 7  Ej ), and for the continu-
ity equation, which the particle density is determined from, an
explicit discretization in time (with 2-dimensional Flux Cor-
rected Transport [5]) 1s used. The spatial discretization is made
in the spherical coordinates (r,9). actually we have an equidis-
tant grid for ¥ = (r—7o)/(r+co) ( 7o = 2a/¢, co can be chosen
suitably ) and g = cos 6. The three elliptic equations are solved
by successive over-relaxation (SOR) in a vectorizable checker-
board scheme.
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Fig.2: The electrostatic potential lines of the vacuum field con-
figuration of an uncharged homogeneously magnetized neutron
star (our starting point).
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Fig.3: The electrostatic potential lines at the time ¢ = 27/
for a small emission rate of the surface. The charge in the
magnetosphere has already deformed the vacuum electric field
to some extent.

Starting from the vacuum fields — magnetic dipole +
electric quadrupole (cf. fig.2) —, at the beginning we assumed
the current coming out of the star to be relatively small. In the
first phases of the time integration, only negative particles are
emitted leading to a noticeable change of the toroidal magnetic
field B,; at this stage the electric field is altered only slightly.
Later on, the developing charge in the magnetosphere grad-
ually deforms the electrostatic potential in such a way that
positive particles can be pulled out from the star. The electro-
static potential at that stage (after one revolution) is shown
in fig.3. Afterwards the density of positive particles increases,
especially near the equator, but one cannot conclude yet that
a corotating zone is forming, since the evolution of the magne-
tospheric charge distribution is far from being completed.

In subsequent runs, we tested what is happening if the
surface emission rate 1s enhanced to a more realistic value.
This leads, of course, to stronger effects in a shorter time, but
conclusive statements about the results cannot be made yet.
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