525 research outputs found

    Development of semiconductor detectors for fast neutron radiography

    Full text link
    A high-energy neutron detector has been developed using a semiconductor diode fabricated from bulk gallium arsenide wafers with a polyethylene neutron converter layer. Typical thickness of the diode layer is 250 to 300 μm with bias voltages of 30 to 150 volts. Converter thicknesses up to 2030 μm have been tested. GaAs neutron detectors offer many advantages over existing detectors including positional information, directional dependence, gamma discrimination, radiation hardness, and spectral tailoring. Polyethylene-coated detectors have been shown to detect 14 MeV neutrons directly from a D-T neutron generator without interference from gamma rays or scattered neutrons. An array of small diode detectors can be assembled to perform fast neutron radiography with direct digital readout and real-time display of the image produced. In addition, because the detectors are insensitive to gamma rays and low energy neutrons, highly radioactive samples (such as spent nuclear fuel or transuranic waste drums) could be radiographed. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87673/2/1118_1.pd

    Development of the Barriers to Error Disclosure Assessment Tool

    Get PDF
    OBJECTIVES: An interprofessional group of health colleges' faculty created and piloted the Barriers to Error Disclosure Assessment tool as an instrument to measure barriers to medical error disclosure among health care providers. METHODS: A review of the literature guided the creation of items describing influences on the decision to disclose a medical error. Local and national experts in error disclosure used a modified Delphi process to gain consensus on the items included in the pilot. After receiving university institutional review board approval, researchers distributed the tool to a convenience sample of physicians (n = 19), pharmacists (n = 20), and nurses (n = 20) from an academic medical center. Means and SDs were used to describe the sample. Intraclass correlation coefficients were used to examine test-retest correspondence between the continuous items on the scale. Factor analysis with varimax rotation was used to determine factor loadings and examine internal consistency reliability. Cronbach α coefficients were calculated during initial and subsequent administrations to assess test-retest reliability. RESULTS: After omitting 2 items with intraclass correlation coefficient of less than 0.40, intraclass correlation coefficients ranged from 0.43 to 0.70, indicating fair to good test-retest correspondence between the continuous items on the final draft. Factor analysis revealed the following factors during the initial administration: confidence and knowledge barriers, institutional barriers, psychological barriers, and financial concern barriers to medical error disclosure. α Coefficients of 0.85 to 0.93 at time 1 and 0.82 to 0.95 at time 2 supported test-retest reliability. CONCLUSIONS: The final version of the 31-item tool can be used to measure perceptions about abilities for disclosing, impressions regarding institutional policies and climate, and specific barriers that inhibit disclosure by health care providers. Preliminary evidence supports the tool's validity and reliability for measuring disclosure variables

    HIV-2/SIV Vpx antagonises NF-κB activation by targeting p65

    Get PDF
    BACKGROUND: The NF-κB family of transcription factors and associated signalling pathways are abundant and ubiquitous in human immune responses. Activation of NF-κB transcription factors by viral pathogen-associated molecular patterns, such as viral RNA and DNA, is fundamental to anti-viral innate immune defences and pro-inflammatory cytokine production that steers adaptive immune responses. Diverse non-viral stimuli, such as lipopolysaccharide and cytokines, also activate NF-κB and the same anti-pathogen gene networks. Viruses adapted to human cells often encode multiple proteins targeting the NF-κB pathway to mitigate the anti-viral effects of NF-κB-dependent host immunity. RESULTS: In this study we have demonstrated using a variety of assays, in a number of different cell types including primary cells, that plasmid-encoded or virus-delivered simian immunodeficiency virus (SIV) accessory protein Vpx is a broad antagonist of NF-κB signalling active against diverse innate NF-κB agonists. Using targeted Vpx mutagenesis, we showed that this novel Vpx phenotype is independent of known Vpx cofactor DCAF1 and other cellular binding partners, including SAMHD1, STING and the HUSH complex. We found that Vpx co-immunoprecipitated with canonical NF-κB transcription factor p65, but not NF-κB family members p50 or p100, preventing nuclear translocation of p65. We found that broad antagonism of NF-κB activation by Vpx was conserved across distantly related lentiviruses as well as for Vpr from SIV Mona monkey (SIVmon), which has Vpx-like SAMHD1-degradation activity. CONCLUSIONS: We have discovered a novel mechanism by which lentiviruses antagonise NF-κB activation by targeting p65. These findings extend our knowledge of how lentiviruses manipulate universal regulators of immunity to avoid the anti-viral sequelae of pro-inflammatory gene expression stimulated by both viral and extra-viral agonists. Importantly our findings are also relevant to the gene therapy field where virus-like particle associated Vpx is routinely used to enhance vector transduction through antagonism of SAMHD1, and perhaps also through manipulation of NF-κB

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    HIV-2/SIV Vpx antagonises NF-κB activation by targeting p65.

    Get PDF
    BACKGROUND: The NF-κB family of transcription factors and associated signalling pathways are abundant and ubiquitous in human immune responses. Activation of NF-κB transcription factors by viral pathogen-associated molecular patterns, such as viral RNA and DNA, is fundamental to anti-viral innate immune defences and pro-inflammatory cytokine production that steers adaptive immune responses. Diverse non-viral stimuli, such as lipopolysaccharide and cytokines, also activate NF-κB and the same anti-pathogen gene networks. Viruses adapted to human cells often encode multiple proteins targeting the NF-κB pathway to mitigate the anti-viral effects of NF-κB-dependent host immunity. RESULTS: In this study we have demonstrated using a variety of assays, in a number of different cell types including primary cells, that plasmid-encoded or virus-delivered simian immunodeficiency virus (SIV) accessory protein Vpx is a broad antagonist of NF-κB signalling active against diverse innate NF-κB agonists. Using targeted Vpx mutagenesis, we showed that this novel Vpx phenotype is independent of known Vpx cofactor DCAF1 and other cellular binding partners, including SAMHD1, STING and the HUSH complex. We found that Vpx co-immunoprecipitated with canonical NF-κB transcription factor p65, but not NF-κB family members p50 or p100, preventing nuclear translocation of p65. We found that broad antagonism of NF-κB activation by Vpx was conserved across distantly related lentiviruses as well as for Vpr from SIV Mona monkey (SIVmon), which has Vpx-like SAMHD1-degradation activity. CONCLUSIONS: We have discovered a novel mechanism by which lentiviruses antagonise NF-κB activation by targeting p65. These findings extend our knowledge of how lentiviruses manipulate universal regulators of immunity to avoid the anti-viral sequelae of pro-inflammatory gene expression stimulated by both viral and extra-viral agonists. Importantly our findings are also relevant to the gene therapy field where virus-like particle associated Vpx is routinely used to enhance vector transduction through antagonism of SAMHD1, and perhaps also through manipulation of NF-κB

    Interplay between electron-phonon and Coulomb interactions in cuprates

    Full text link
    Evidence for strong electron-phonon coupling in high-Tc cuprates is reviewed, with emphasis on the electron and phonon spectral functions. Effects due to the interplay between the Coulomb and electron-phonon interactions are studied. For weakly doped cuprates, the phonon self-energy is strongly reduced due to correlation effects, while there is no corresponding strong reduction for the electron self-energy. Polaron formation is studied, focusing on effects of Coulomb interaction and antiferromagnetic correlations. It is argued that experimental indications of polaron formation in undoped cuprates are due to a strong electron-phonon interaction for these systems.Comment: 43 pages and 22 figure

    Understanding patient acceptance and refusal of HIV testing in the emergency department

    Get PDF
    <p>ABSTRACT</p> <p>Background</p> <p>Despite high rates of patient satisfaction with emergency department (ED) HIV testing, acceptance varies widely. It is thought that patients who decline may be at higher risk for HIV infection, thus we sought to better understand patient acceptance and refusal of ED HIV testing.</p> <p>Methods</p> <p>In-depth interviews with fifty ED patients (28 accepters and 22 decliners of HIV testing) in three ED HIV testing programs that serve vulnerable urban populations in northern California.</p> <p>Results</p> <p>Many factors influenced the decision to accept ED HIV testing, including curiosity, reassurance of negative status, convenience, and opportunity. Similarly, a number of factors influenced the decision to decline HIV testing, including having been tested recently, the perception of being at low risk for HIV infection due to monogamy, abstinence or condom use, and wanting to focus on the medical reason for the ED visit. Both accepters and decliners viewed ED HIV testing favorably and nearly all participants felt comfortable with the testing experience, including the absence of counseling. While many participants who declined an ED HIV test had logical reasons, some participants also made clear that they would prefer not to know their HIV status rather than face psychosocial consequences such as loss of trust in a relationship or disclosure of status in hospital or public health records.</p> <p>Conclusions</p> <p>Testing for HIV in the ED as for any other health problem reduces barriers to testing for some but not all patients. Patients who decline ED HIV testing may have rational reasons, but there are some patients who avoid HIV testing because of psychosocial ramifications. While ED HIV testing is generally acceptable, more targeted approaches to testing are necessary for this subgroup.</p

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
    corecore