2,012 research outputs found

    Using BATSE to measure gamma-ray burst polarization

    Get PDF
    We describe a technique for measuring the polarization of hard x-rays from γ-ray bursts based on the angular distribution of that portion of the flux which is scattered off the top of the Earth’s atmosphere. The scattering cross section depends not only on the scatter angle itself, but on the orientation of the scatter angle with respect to the incident polarization vector. Consequently, the distribution of the observed albedo flux will depend on the direction and the polarization properties (i.e., the level of polarization and polarization angle) of the source. Although the BATSE design (with its large field-of-view for each detector) is not optimized for albedo polarimetry, we have nonetheless investigated the feasibility of this technique using BATSE data

    Search for polarization from the prompt gamma-ray emission of GRB 041219a with SPI on INTEGRAL

    Get PDF
    Measuring the polarization of the prompt γ-ray emission from gamma-ray bursts (GRBs) can significantly improve our understanding of both the GRB emission mechanisms as well as the underlying engine driving the explosion. We searched for polarization in the prompt γ-ray emission of GRB 041219a with the SPI instrument on INTEGRAL. Using multiple-detector coincidence events in the 100-350 keV energy band, our analysis yields a polarization fraction from this GRB of 98%+/-33%. Statistically, we cannot claim a polarization detection from this source. Moreover, different event selection criteria lead to even less significant polarization fractions, e.g., lower polarization fractions are obtained when higher energies are included in the analysis. We cannot strongly rule out the possibility that the measured modulation is dominated by instrumental systematics. Therefore, SPI observations of GRB 041219a do not significantly constrain GRB models. However, this measurement demonstrates the capability of SPI to measure polarization, as well as the techniques developed for this analysis

    POLARIZATION MEASUREMENT OF GRB 041219A WITH SPI

    Get PDF
    Measuring the polarization of the prompt gamma-ray emission from GRBs can signicantly improve our understanding of both the GRB emission mechanisms, as well as of the underlying engine driving the explosion. We searched for polarization in the prompt gamma-ray emission of GRB 041219a with the SPI instrument. Using multiple detector coincidence events in the 100–350 keV energy band, our analysis yields a polarization fraction from this GRB of 98 +-33%. Statistically, we cannot claim a polarization detection from this source. We cannot strongly rule out the possibility that the measured modulation is dominated by instrumental systematics. Therefore, SPI observations of GRB 041219a do not significantly constrain GRB models. However, this measurement demonstrates the capability of SPI to measure polarization, and the techniques developed for this analysis

    RXTE Observations of Soft Gamma Repeater Bursts

    Get PDF
    The spectra of short soft gamma repeater (SGR) bursts at photon energies above 15 keV are often well described by an optically thin thermal bremsstrahlung model (i.e., F(E) ~ E^−1 exp(−E/kT) ) with kT=20−40 keV. However, the spectral shape burst continuum at lower photon energies (down to 2 keV) is not well established. It is important to better understand the SGR burst spectral properties at lower energies since inadequate description of the burst spectral continuum could lead to incorrect conclusions, such as existence of spectral lines. Here, we present detailed spectral investigations (in 2-200 keV) of 163 bursts from SGR 1806-20, all detected with Rossi X-ray Timing Explorer during the 2004 active episode that included the giant flare on 27 December 2004. We find that the great majority of burst spectra are well represented by the combination of a blackbody plus a OTTB models

    Monitoring Cen X-3 with BATSE

    Get PDF
    The eight uncollimated BATSE Large Area Detectors (LAD's) provide the ability to monitor pulsed hard x ray sources on a nearly continuous basis. Using data from the LAD's, the pulse timing and pulsed flux of the 4.8 second period binary x ray pulsar Centaurus X-3 was analyzed over a two month period. The methods and initial results of this analysis, which includes both data folded onboard GRO and 1.024 second resolution discriminator rates folded on the ground, are presented

    Chandra localization of XTE J1906+090 and discovery of its optical and infrared counterparts

    Get PDF
    We present the Chandra identification and localization of the transient X-ray source XTE J1906+090 and the discovery of its optical and infrared counterparts. Our analysis of archival Chandra ACIS-I observations of the field found the source approximately 8 away from the position determined earlier with the RXTE PCA. We have confirmed the source identification with timing analysis of the X-ray data, which detected the source spin period of 89.6 s. The best Chandra position for the source is R.A. = 19h04m47491, decl. = +09024140. Subsequently, we performed optical observations of the field around the new location and discovered a coincident optical source with R-band magnitude of 18.7. A search in the Two Micron All Sky Survey catalog revealed an infrared point source with J = 15.2, H = 14.2, and K = 13.5, whose location is also coincident with our Chandra and optical positions. Our results add fresh evidence for a Be/X-ray transient nature for XTE J1906+090

    Observations of Accreting Pulsars

    Get PDF
    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories

    Recent Outbursts from the Transient X-Ray Pulsar Cep X-4 (GS 2138+56)

    Full text link
    We report on X-ray observations of the 66 s period transient X-ray pulsar Cep X-4 (GS 2138+56) with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO) and with the Rossi X-ray Timing Explorer (RXTE). Two outbursts from Cep X-4 were observed with BATSE in 1993 June-July and 1997 July. Pulse frequencies of 15.0941 +/- 0.0002 mHz on 1993 June 25 (MJD 49,163) and 15.0882 +/- 0.0002 mHz on 1997 July 12 (MJD 50,641) were each measured from 2 day spans of BATSE data near each outburst's peak. Cep X-4 showed an average spin down rate of (-4.14 +/- 0.08)*10^(-14) Hz/s between the 1993 and 1997 outbursts. After BATSE could no longer detect Cep X-4, public observations were performed on 1997 July 18 & 25 with the Proportional Counter Array (PCA) on RXTE. A pulse frequency of 15.088 +/- 0.004 mHz was measured from observations on 1997 July 18 (MJD 50,647). Significant aperiodic noise, with an rms variance of ~18% in the frequency range 0.01-1.0 Hz was observed on both days. Energy and intensity dependent pulse shape variations were also seen in these data. Recently published optical observations associate Cep X-4 with a Be companion star. If all 4 outbursts observed from Cep X-4 are assumed to occur at the same orbital phase, we find that the orbital period is between 23 days and 147.3 days.Comment: 19 pages (LaTeX) including 9 figures. Accepted for publication in the Astrophysical Journa
    corecore