33 research outputs found
Benefits of reaction engineering in biocatalysis
Please click Additional Files below to see the full abstract
OtkriÄe enzima za razgradnju plastike
Plastics are highly advanced materials that have a vast array of applications and are produced globally in an approximate amount of 350 to 400 million tons every year. Nevertheless, there are serious concerns about plastic waste and pollution as a result of the misuse and lack of control of their use in industries, including packaging, transportation, manufacturing, and agriculture. Approximately 1,000 years are required for plastic bags to decompose efficiently. Additionally, CO2 and dioxins are released into the atmosphere by burning plastics, and they contribute to global warming. The Earthās environment is overwhelmed with waste, mostly from poor recycling practices and low circular usage, resulting in millions of tons of waste generated annually. To combat this, new technologies for recycling post-consumer plastics are desperately needed to decrease plastic waste and improve the environment, while also finding ways to utilise these materials. Due to the inadequate disposal methods currently available for plastic waste, there has been increased interest in the use of microorganisms and enzymes designed for the biodegradation of non-degradable synthetic polymers via biocatalytic depolymerisation indicating that plastics treatment and recycling can be more efficient and sustainable.Plastika je daleko najnapredniji materijal kad je rijeÄ o primjeni i svojstvima, a procjenjuje se da se svake godine globalno proizvede 350 do 400 milijuna tona. Ona je postala ozbiljan problem s obzirom na odlaganje plastiÄnog otpada i oneÄiÅ”Äenje, zbog njezine nekontrolirane upotrebe u razliÄite svrhe tijekom posljednjih desetljeÄa, kao Å”to su pakiranje, transport, industrija i poljoprivreda. Za uÄinkovitu razgradnju plastiÄnih vreÄica potrebno je otprilike 1000 godina. Osim toga, izgaranjem plastike u atmosferu se ispuÅ”taju CO2 i dioksini koji doprinose globalnom zatopljenju. Zemaljski kopneni ili morski okoliÅ” akumulira milijune tona otpada svake godine zbog loÅ”eg recikliranja i niske kružne upotrebe. Inovativne tehnologije za recikliranje otpadne plastike prijeko su potrebne za smanjenje plastiÄnog otpada i postizanje ciljeva kvalitete okoliÅ”a uz valorizaciju potroÅ”ne plastike. Zbog trenutaÄno neadekvatnih metoda zbrinjavanja plastiÄnog otpada poveÄan je fokus na upotrebu mikroorganizama i enzima dizajniranih za biorazgradnju nerazgradivih sintetiÄkih polimera putem biokatalitiÄke depolimerizacije, Å”to ukazuje na to da obrada plastike i recikliranje mogu biti uÄinkovitiji i održivi
Assessment of C-type halohydrin dehalogenase stability
Please click Additional Files below to see the full abstract
Biokataliza u doba zelene revolucije
U dobu zelene revolucije sve viÅ”e raste svijest o potrebi razvoja održivijih alternativa tradicionalnim industrijskim procesima. Gotovo svi industrijski procesi upotrebljavaju katalizatore koji su nerazgradivi i mogu biti Å”tetni za okoliÅ”. S druge strane, biokatalizatori su enzimi ā molekule evoluirale u fizioloÅ”kom okruženju koje su u potpunosti biorazgradive, a u blagim reakcijskim uvjetima fizioloÅ”kog pH, temperature i tlaka okoline pokazuju najveÄu katalitiÄku aktivnost i uÄinkovitost. Biokatalizu ljudi primjenjuju joÅ” od starog vijeka u proizvodnji hrane poput sira, kiselog tijesta, piva, vina i octa bez znanja o pozadini procesa koji se odvija, a u posljednjih nekoliko desetljeÄa porasla je i njezina primjena u industriji, posebice u proizvodnji lijekova i kemikalija. Prepoznate su sve prednosti koje imaju biokatalizatori, poput njihove velike selektivnosti, velike specifiÄnosti prema supstratu i biorazgradivosti, te postaje sve jasnije da biokataliza može pomoÄi ispunjenju ciljeva održivog razvoja i implementaciji zelene kemije u industrijske procese s maksimalnim iskoriÅ”tenjem resursa uz minimalno stvaranje otpada. Iako biokataliza ispunjava gotovo sva naÄela zelene kemije i potencijal biokatalizatora eksponencijalno raste razvojem inovacija i tehnoloÅ”kog napretka, posebno u podruÄjima biotehnologije i molekularne biologije, sama prisutnost biokatalizatora u kemijskom procesu ne podrazumijeva održivost procesa. EkoloÅ”ku prihvatljivost, ali i ekonomsku isplativost, procesa je potrebno dokazati Å”to ranije tijekom njegova razvoja praÄenjem raznih procesnih pokazatelja kako bi se uÅ”tedjeli i vrijeme i novac
Phytoremediation ā Overview and Perspective
Remedijacija tala oneÄiÅ”Äenih kompleksnim mjeÅ”avinama organskih tvari i teÅ”kih metala jedan je od najveÄih izazova obnavljanja okoliÅ”a. Fitoremedijacija je naziv za skup postupaka koji upotrebljavaju biljke, njihove enzime i prisutne mikroorganizme iz zone korijenja za izolaciju, transport, detoksikaciju i mineralizaciju ksenobiotika, Äime se smanjuje njihova koncentracija, pokretljivost ili toksiÄni uÄinci. Fitoekstrakcija, fitostabilizacija, fitovolatizacija, fitorazgradnja i rizorazgradnja imaju velik potencijal za nedestruktivnu remedijaciju tala, Å”to pokazuju brojna istraživanja u laboratorijskom mjerilu. Kako bi fitoremedijacija postala pouzdana tehnologija za Å”irok spektar primjena u veÄem mjerilu, potrebno je ulagati resurse u nova istraživanja s ciljem boljeg razumijevanja procesa u cjelini, posebice na genetiÄkoj i biokemijskoj razini.
Ovo djelo je dano na koriÅ”tenje pod licencom Creative Commons Imenovanje 4.0 meÄunarodna.Remediation of soils contaminated with complex mixtures of organic compounds and heavy metals is one of the greatest challenges of environmental renewal. Phytoremediation is the name for a set of techniques that employ plants, their enzymes, and associated microorganisms in the root zone for isolation, transport, detoxification, and mineralization of xenobiotics in the soil, thereby reducing their concentration, mobility or toxic effects. Phytoextraction, phytostabilization, phytovolatization, phytodegradation, and rhizodegradation have a great potential for non-destructive remediation of soils as shown by numerous laboratory-scale studies. In order for phytoremediation to become a reliable technology for a wide range of applications at a larger scale, resources need to be invested in a new research with an aim to better understand the process as a whole, especially at the genetic and biochemical levels.
This work is licensed under a Creative Commons Attribution 4.0 International License
PoveÄanje uÄinkovitosti bioremedijacije na razini gena
Bioremedijacija se koristi potencijalom mikroorganizama pri uklanjanju oneÄiÅ”Äenja iz okoliÅ”a. MetaboliÄki putovi kojima se oneÄiÅ”ÄujuÄa tvar razgraÄuje u manje toksiÄne tvari vrlo su kompleksni. Naprednim tehnikama molekularne biologije mehanizmi bioremedijacije izuÄavaju se na razini gena. Gen zaslužan za proizvodnju proteina koji razgraÄuje oneÄiÅ”ÄujuÄu tvar može se izolirati i unijeti u drugi organizam, Äime nastaje organizam s poboljÅ”anim bioremedijacijskim svojstvima. Brojna se svjetska istraživanja temelje na genetiÄkom inženjerstvu na mikroorganizmima, no najveÄu prepreku upotrebe takvih organizama u bioremedijaciji Äine zakonski okviri te nedovoljno poznavanje posljedica njihova oslobaÄanja u okoliÅ”
Multi-reaction kinetic modeling for the peroxidase-aldolase cascade synthesis of a D-fagomine precursor
Altres ajuts: Acord transformatiu CRUE-CSICThe feasibility of a peroxidase-aldolase cascade reaction for the synthesis of therapeutically-valuable iminocyclitols is discussed herein. A two-enzyme system consisting of chloroperoxidase (CPO) and D-fructose-6-phosphate aldolase (FSA) was evaluated for the synthesis of a D-fagomine precursor (preFagomine) from a N-Cbz-3-aminopropanol. An in-depth, systematic, step-by-step kinetic modeling of seven reactions and two inactivation decays was proposed to elucidate the reaction mechanism, prepare suitable stabilized biocatalysts, and find the optimal conditions for its application. The model described accurately the data and predicted the outcome at different experimental conditions. The inactivation of FSA caused by CPO was identified as the main bottleneck in the reaction. A two-step reaction approach and the use of immobilized enzymes on magnetic nanoparticle clusters and functionalized agarose carriers increased the stability of FSA, with an 1839-fold higher preFagomine formation per mol of enzyme in comparison to a one-pot reaction using soluble enzymes
Application of Mathematical Modelling in Development of Enzymatic Cascade Reactions
āSustavska biokatalizaā (engl. systems biocatalysis), odnosno provedba kaskadnih reakcija koje oponaÅ”aju staniÄne metaboliÄke puteve danas se sve ÄeÅ”Äe primjenjuje. Kaskadne reakcije imaju brojne prednosti nad tradicionalnim kemijskim postupcima, meÄutim, za uspjeÅ”nu optimizaciju i prenoÅ”enje takvih kompleksnih sustava u veÄe, industrijsko mjerilo potrebno je primijeniti reakcijsko inženjerstvo. U ovom preglednom radu navedeni su primjeri uspjeÅ”ne primjene matematiÄkog modeliranja na razvoj enzimskih kaskadnih reakcija koji pokazuju važnost i potencijal te metodologije.
Ovo djelo je dano na koriÅ”tenje pod licencom Creative Commons Imenovanje 4.0 meÄunarodna.Today, systems biocatalysis, i.e., the implementation of cascade reactions that mimic cellular metabolic pathways, is increasingly being used. Cascade reactions have numerous advantages over traditional chemical processes; however, in order to successfully optimize and transfer such complex systems to a larger, industrial scale, it is necessary to apply reaction engineering. This review paper provides examples of the successful application of mathematical modelling in development of enzymatic cascade reactions that demonstrate the importance and potential of this methodology.
This work is licensed under a Creative Commons Attribution 4.0 International License
Enzyme Reaction Engineering as a Tool to Investigate the Potential Application of Enzyme Reaction Systems
It is widely recognized and accepted that although biocatalysis is an exquisite tool to synthesize natural and unnatural compounds under mild process conditions, much can be done to better understand these processes as well as detect resulting bottlenecks and help to resolve them. This is the precise purpose of enzyme reaction engineering, a scientific discipline that focuses on investigating enzyme reactions with the goal of facilitating their implementation on an industrial scale. Even though reaction schemes of enzyme reactions often seem simple, in practice, the interdependence of different variables is unknown, very complex and may prevent further applications. Therefore, in this work, important aspects of the implementation of enzyme reactions are discussed using simple and complex examples, along with principles of mathematical modelling that provide explanations for why some reactions do not proceed as planned