3,216 research outputs found

    Does nurses’ health affect their intention to remain in their current position?

    Get PDF
    © 2016 The Authors. Journal of Nursing Management Published by John Wiley & Sons Ltd Aim: To investigate and describe nurses’ and midwives’ physical health, rates of symptoms and disease, and to determine if these factors contribute to intention to leave. Background: The nursing and midwifery workforce is ageing yet little is known about their physical health or its relationship to intention to leave. Methods: An online survey of health and work-related assessments was distributed through the New South Wales Nurses and Midwives Association and professional contacts. Results: Nurses and midwives (n = 5041) reported good-very good health overall. With 22.2% intending to leave in the next 12 months, older age, better perceived health and job satisfaction, regional residence and not working shifts predicted no intention to leave while breathing problems predicted intention to leave. Conclusions: Study findings flag the importance of health as an influence on intention to leave. Alongside job satisfaction and shift-working, health presents opportunities for workplace initiatives to maintain nurses in the workforce. Implications for nursing management: Educators, managers and policy makers should heed the significant influence of health for retention of staff and consider what strategies may mitigate health risks for this workforce

    The formation and aqueous alteration of CM2 chondrites and their relationship to CO3 chondrites: A fresh isotopic (O, Cd, Cr, Si, Te, Ti, and Zn) perspective from the Winchcombe CM2 fall

    Get PDF
    As part of an integrated consortium study, we have undertaken O, Cd, Cr, Si, Te, Ti, and Zn whole rock isotopic measurements of the Winchcombe CM2 meteorite. δ66Zn values determined for two Winchcombe aliquots are +0.29 ± 0.05‰ (2SD) and +0.45 ± 0.05‰ (2SD). The difference between these analyses likely reflects sample heterogeneity. Zn isotope compositions for Winchcombe show excellent agreement with published CM2 data. δ114Cd for a single Winchcombe aliquot is +0.29 ± 0.04‰ (2SD), which is close to a previous result for Murchison. δ130Te values for three aliquots gave indistinguishable results, with a mean value of +0.62 ± 0.01‰ (2SD) and are essentially identical to published values for CM2s. ε53Cr and ε54Cr for Winchcombe are 0.319 ± 0.029 (2SE) and 0.775 ± 0.067 (2SE), respectively. Based on its Cr isotopic composition, Winchcombe plots close to other CM2 chondrites. ε50Ti and ε46Ti values for Winchcombe are 3.21 ± 0.09 (2SE) and 0.46 ± 0.08 (2SE), respectively, and are in line with recently published data for CM2s. The δ30Si composition of Winchcombe is −0.50 ± 0.06‰ (2SD, n = 11) and is essentially indistinguishable from measurements obtained on other CM2 chondrites. In conformity with petrographic observations, oxygen isotope analyses of both bulk and micromilled fractions from Winchcombe clearly demonstrate that its parent body experienced extensive aqueous alteration. The style of alteration exhibited by Winchcombe is consistent with relatively closed system processes. Analysis of different fractions within Winchcombe broadly support the view that, while different lithologies within an individual CM2 meteorite can be highly variable, each meteorite is characterized by a predominant alteration type. Mixing of different lithologies within a regolith environment to form cataclastic matrix is supported by oxygen isotope analysis of micromilled fractions from Winchcombe. Previously unpublished bulk oxygen isotope data for 12 CM2 chondrites, when combined with published data, define a well-constrained regression line with a slope of 0.77. Winchcombe analyses define a more limited linear trend at the isotopically heavy, more aqueously altered, end of the slope 0.77 CM2 array. The CM2 slope 0.77 array intersects the oxygen isotope field of CO3 falls, indicating that the unaltered precursor material to the CMs was essentially identical in oxygen isotope composition to the CO3 falls. Our data are consistent with earlier suggestions that the main differences between the CO3s and CM2s reflect differing amounts of water ice that co-accreted into their respective parent bodies, being high in the case of CM2s and low in the case of CO3s. The small difference in Si isotope compositions between the CM and CO meteorites can be explained by different proportions of matrix versus refractory silicates. CMs and COs may also be indistinguishable with respect to Ti and Cr isotopes; however, further analysis is required to test this possibility. The close relationship between CO3 and CM2 chondrites revealed by our data supports the emerging view that the snow line within protoplanetary disks marks an important zone of planetesimal accretion

    A new approach for the analysis of bacterial microarray-based Comparative Genomic Hybridization: insights from an empirical study

    Get PDF
    BACKGROUND: Microarray-based Comparative Genomic Hybridization (M-CGH) has been used to characterize the extensive intraspecies genetic diversity found in bacteria at the whole-genome level. Although conventional microarray analytical procedures have proved adequate in handling M-CGH data, data interpretation using these methods is based on a continuous character model in which gene divergence and gene absence form a spectrum of decreasing gene conservation levels. However, whereas gene divergence may yet be accompanied by retention in gene function, gene absence invariably leads to loss of function. This distinction, if ignored, leads to a loss in the information to be gained from M-CGH data. We present here results from experiments in which two genome-sequenced strains of C. jejuni were compared against each other using M-CGH. Because the gene content of both strains was known a priori, we were able to closely examine the effects of sequence divergence and gene absence on M-CGH data in order to define analytical parameters for M-CGH data interpretation. This would facilitate the examination of the relative effects of sequence divergence or gene absence in comparative genomics analyses of multiple strains of any species for which genome sequence data and a DNA microarray are available. RESULTS: As a first step towards improving the analysis of M-CGH data, we estimated the degree of experimental error in a series of experiments in which identical samples were compared against each other by M-CGH. This variance estimate was used to validate a Log Ratio-based methodology for identification of outliers in M-CGH data. We compared two genome strains by M-CGH to examine the effect of probe/target identity on the Log Ratios of signal intensities using prior knowledge of gene divergence and gene absence to establish Log Ratio thresholds for the identification of absent and conserved genes. CONCLUSION: The results from this empirical study validate the Log Ratio thresholds that have been used in other studies to establish gene divergence/absence. Moreover, the analytical framework presented here enhances the information content derived from M-CGH data by shifting the focus from divergent/absent gene detection to accurate detection of conserved and absent genes. This approach closely aligns the technical limitations of M-CGH analysis with practical limitations on the biological interpretation of comparative genomics data

    Three-Dimensional FDTD Simulation of Biomaterial Exposure to Electromagnetic Nanopulses

    Full text link
    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, have been recently approved by the Federal Communications Commission for a number of various applications. They are also being explored for applications in biotechnology and medicine. The simulation of the propagation of a nanopulse through biological matter, previously performed using a two-dimensional finite difference-time domain method (FDTD), has been extended here into a full three-dimensional computation. To account for the UWB frequency range, a geometrical resolution of the exposed sample was 0.25mm0.25 mm, and the dielectric properties of biological matter were accurately described in terms of the Debye model. The results obtained from three-dimensional computation support the previously obtained results: the electromagnetic field inside a biological tissue depends on the incident pulse rise time and width, with increased importance of the rise time as the conductivity increases; no thermal effects are possible for the low pulse repetition rates, supported by recent experiments. New results show that the dielectric sample exposed to nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we obtained the dominant resonant frequency and the QQ-factor of the resonator.Comment: 15 pages, 8 figure

    LGMDD1 natural history and phenotypic spectrum: Implications for clinical trials

    Get PDF
    OBJECTIVE: To delineate the full phenotypic spectrum and characterize the natural history of limb girdle muscular dystrophy type D1 (LGMDD1). METHODS: We extracted age at clinical events of interest contributing to LGMDD1 disease burden via a systematic literature and chart review. Manual muscle testing and quantitative dynamometry data were used to estimate annualized rates of change. We also conducted a cross-sectional observational study using previously validated patient-reported outcome assessments (ACTIVLIM, PROMIS-57) and a new LGMDD1 questionnaire. Some individuals underwent repeat ACTIVLIM and LGMDD1 questionnaire assessments at 1.5 and 2.5 years. RESULTS: A total of 122 LGMDD1 patients were included from 14 different countries. We identified two new variants (p.E54K, p.V99A). In vitro assays and segregation support their pathogenicity. The mean onset age was 29.7 years. Genotype appears to impact onset age, weakness pattern, and median time to loss of ambulation (34 years). Dysphagia was the most frequent abnormality (51.4%). Deltoids, biceps, grip, iliopsoas, and hamstrings strength decreased by (0.5-1 lb/year). Cross-sectional ACTIVLIM and LGMDD1 questionnaire scores correlated with years from disease onset. Longitudinally, only the LGMDD1 questionnaire detected significant progression at both 1.5 and 2.5 years. Treatment trials would require 62 (1.5 years) or 30 (2.5 years) patients to detect a 70% reduction in the progression of the LGMDD1 questionnaire. INTERPRETATION: This study is the largest description of LGMDD1 patients to date and highlights potential genotype-dependent differences that need to be verified prospectively. Future clinical trials will need to account for variability in these key phenotypic features when selecting outcome measures and enrolling patients

    Molecular Gas in Three z ∼ 7 Quasar Host Galaxies

    Get PDF
    We present ALMA band 3 observations of the CO(6-5), CO(7-6), and [C i] 369 μm emission lines in three of the highest-redshift quasar host galaxies at . These measurements constitute the highest-redshift CO detections to date. The target quasars have previously been detected in [C ii] 158 μm emission and the underlying FIR dust continuum. We detect (spatially unresolved, at a resolution of > 2″, or ≈14 kpc) CO emission in all three quasar hosts. In two sources, we detect the continuum emission around 400 μm (rest-frame), and in one source we detect [C i] at low significance. We derive molecular gas reservoirs of (1-3) T10 10 in the quasar hosts, i.e., approximately only 10 times the mass of their central supermassive black holes. The extrapolated [C ii]-to-CO(1-0) luminosity ratio is 2500-4200, consistent with measurement s in galaxies at lower redshift. The detection of the [C i] line in one quasar host galaxy and the limit on the [C i] emission in the other two hosts enables a first characterization of the physical properties of the interstellar medium in z ∼ 7 quasar hosts. In the sources, the derived global CO/[C ii] /[C i] line ratios are consistent with expectations from photodissociation regions, but not X-ray-dominated regions. This suggest that quantities derived from the molecular gas and dust emission are related to ongoing star-formation activity in the quasar hosts, providing further evidence that the quasar hosts studied here harbor intense starbursts in addition to their active nucleus

    High brightness solution-processed OLEDs employing linear, small molecule emitters

    Get PDF
    Two novel linear oligomers that can be solution-processed to form green organic light-emitting diodes (OLEDs) are reported. Each oligomer has a donor-acceptor structure, incorporating a benzothiadiazole core with bifluorene arms attached at the 4- and 7-positions. Further electron donor behaviour is inferred from a terminal triphenylamine unit in Green 2. The resulting solution-processed OLEDs exhibited excellent performance, with a maximum luminance of 20 388 cd m-2 recorded for Green 2
    corecore