779 research outputs found

    Cinematic and aesthetic cartographies of subjective mutation

    Get PDF
    This article exmaines the use of cinema as a mapping of subjective mutation in the work of Deleuze, Gauttari and Berardi. Drawing on Deleuze's distinciton between the reduction of the art-work to the symptom and the idea of art as symptomatology, the article focuses on Berardi's use of cinematic examples, posing the quesiton in each case of to what extent they function as symptomatologies or mere symptoms of cultural and subjective mutations in examples ranging from Bergman's Persona to Van Sant's Elephant to finish on speculations about Fincher's The Social Network as a cirtical engagement with subjective mutation in the 21st Century

    Evolution and development of cell walls in cereal grains

    Get PDF
    The composition of cell walls in cereal grains and other grass species differs markedly from walls in seeds of other plants. In the maternal tissues that surround the embryo and endosperm of the grain, walls contain higher levels of cellulose and in many cases are heavily lignified. This may be contrasted with walls of the endosperm, where the amount of cellulose is relatively low, and the walls are generally not lignified. The low cellulose and lignin contents are possible because the walls of the endosperm perform no load-bearing function in the mature grain and indeed the low levels of these relatively intractable wall components are necessary because they allow rapid degradation of the walls following germination of the grain. The major non-cellulosic components of endosperm walls are usually heteroxylans and (1,3;1,4)-β-glucans, with lower levels of xyloglucans, glucomannans, and pectic polysaccharides. Pectic polysaccharides and xyloglucans are the major non-cellulosic wall constituents in most dicot species, in which (1,3;1,4)-β-glucans are usually absent and heteroxylans are found at relatively low levels. Thus, the "core" non-cellulosic wall polysaccharides in grain of the cereals and other grasses are the heteroxylans and, more specifically, arabinoxylans. The (1,3;1,4)-β-glucans appear in the endosperm of some grass species but are essentially absent from others; they may constitute from zero to more than 45% of the cell walls of the endosperm, depending on the species. It is clear that in some cases these (1,3;1,4)-β-glucans function as a major store of metabolizable glucose in the grain. Cereal grains and their constituent cell wall polysaccharides are centrally important as a source of dietary fiber in human societies and breeders have started to select for high levels of non-cellulosic wall polysaccharides in grain. To meet end-user requirements, it is important that we understand cell wall biology in the grain both during development and following germination.Rachel A .Burton and Geoffrey B. Finche

    New Magnetic Excitations in the Spin-Density-Wave of Chromium

    Full text link
    Low-energy magnetic excitations of chromium have been reinvestigated with a single-Q crystal using neutron scattering technique. In the transverse spin-density-wave phase a new type of well-defined magnetic excitation is found around (0,0,1) with a weak dispersion perpendicular to the wavevector of the incommensurate structure. The magnetic excitation has an energy gap of E ~ 4 meV and at (0,0,1) exactly corresponds to the Fincher mode previously studied only along the incommensurate wavevector.Comment: 4 pages, 4 figure

    Morphology, carbohydrate distribution, gene expression, and enzymatic activities related to cell wall hydrolysis in four barley varieties during simulated malting

    Get PDF
    Many biological processes, such as cell wall hydrolysis and the mobilisation of nutrient reserves from the starchy endosperm, require stringent regulation to successfully malt barley (Hordeum vulgare) grain in an industrial context. Much of the accumulated knowledge defining these events has been collected from individual, unrelated experiments, and data have often been extrapolated from Petri dish germination, rather than malting, experiments. Here, we present comprehensive morphological, biochemical, and transcript data from a simulated malt batch of the three elite malting cultivars Admiral, Navigator, and Flagship, and the feed cultivar Keel. Activities of lytic enzymes implicated in cell wall and starch depolymerisation in germinated grain have been measured, and transcript data for published cell wall hydrolytic genes have been provided. It was notable that Flagship and Keel exhibited generally similar patterns of enzyme and transcript expression, but exhibited a few key differences that may partially explain Flagship's superior malting qualities. Admiral and Navigator also showed matching expression patterns for these genes and enzymes, but the patterns differed from those of Flagship and Keel, despite Admiral and Navigator having Keel as a common ancestor. Overall (1,3;1,4)-β-glucanase activity differed between cultivars, with lower enzyme levels and concomitantly higher amounts of (1,3;1,4)-β-glucan in the feed variety, Keel, at the end of malting. Transcript levels of the gene encoding (1,3;1,4)-β-glucanase isoenzyme EI were almost three times higher than those encoding isoenzyme EII, suggesting a previously unrecognised importance for isoenzyme EI during malting. Careful morphological examination showed that scutellum epithelial cells in mature dry grain are elongated but expand no further as malting progresses, in contrast to equivalent cells in other cereals, perhaps demonstrating a morphological change in this critical organ over generations of breeding selection. Fluorescent immuno-histochemical labelling revealed the presence of pectin in the nucellus and, for the first time, significant amounts of callose throughout the starchy endosperm of mature grain.Natalie S. Betts, Laura G. Wilkinson, Shi F. Khor, Neil J. Shirley, Finn Lok, Birgitte Skadhauge, Rachel A. Burton, Geoffrey B. Fincher and Helen M. Collin

    Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains

    Get PDF
    Non-starch polysaccharides (NSPs) have many health benefits, including immunomodulatory activity, lowering serum cholesterol, a faecal bulking effect, enhanced absorption of certain minerals, prebiotic effects and the amelioration of type II diabetes. The principal components of the NSP in cereal grains are (1,3;1,4)-β-glucans and arabinoxylans. Although (1,3;1,4)-β-glucan (hereafter called β-glucan) is not the most representative component of wheat cell walls, it is one of the most important types of soluble fibre in terms of its proven beneficial effects on human health. In the present work we explored the genetic variability of β-glucan content in grains from a tetraploid wheat collection that had been genotyped with a 90k-iSelect array, and combined this data to carry out an association analysis. The β-glucan content, expressed as a percentage w/w of grain dry weight, ranged from 0.18% to 0.89% across the collection. Our analysis identified seven genomic regions associated with β-glucan, located on chromosomes 1A, 2A (two), 2B, 5B and 7A (two), confirming the quantitative nature of this trait. Analysis of marker trait associations (MTAs) in syntenic regions of several grass species revealed putative candidate genes that might influence β-glucan levels in the endosperm, possibly via their participation in carbon partitioning. These include the glycosyl hydrolases endo-β-(1,4)-glucanase (cellulase), β-amylase, (1,4)-β-xylan endohydrolase, xylanase inhibitor protein I, isoamylase and the glycosyl transferase starch synthase II

    Altered expression of genes implicated in xylan biosynthesis affects penetration resistance against powdery mildew

    Get PDF
    Heteroxylan has recently been identified as an important component of papillae, which are formed during powdery mildew infection of barley leaves. Deposition of heteroxylan near the sites of attempted fungal penetration in the epidermal cell wall is believed to enhance the physical resistance to the fungal penetration peg and hence to improve pre-invasion resistance. Several glycosyltransferase (GT) families are implicated in the assembly of heteroxylan in the plant cell wall, and are likely to work together in a multi-enzyme complex. Members of key GT families reported to be involved in heteroxylan biosynthesis are up-regulated in the epidermal layer of barley leaves during powdery mildew infection. Modulation of their expression leads to altered susceptibility levels, suggesting that these genes are important for penetration resistance. The highest level of resistance was achieved when a GT43 gene was co-expressed with a GT47 candidate gene, both of which have been predicted to be involved in xylan backbone biosynthesis. Altering the expression level of several candidate heteroxylan synthesis genes can significantly alter disease susceptibility. This is predicted to occur through changes in the amount and structure of heteroxylan in barley papillae.Jamil Chowdhury, Stefanie Lück, Jeyaraman Rajaraman, Dimitar Douchkov, Neil J. Shirley, Julian G. Schwerdt, Patrick Schweizer, Geoffrey B. Fincher, Rachel A. Burton and Alan Littl

    A First Look at the Year in Computing

    Get PDF
    In this paper, we discuss students’ expectations and experiences in the first term of the Year in Computing, a new programme for non-computing majors at the University of Kent, a public research university in the UK. We focus on the effect of students’ home discipline on their experiences in the programme and situate this work within the context of wider efforts to make the study of computing accessible to a broader range of students

    Electron-phonon effects and transport in carbon nanotubes

    Full text link
    We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.Comment: 5 pages and 4 figure
    • …
    corecore