
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Dziallas, Sebastian and Fincher, Sally and Johnson, Colin G. and Utting, Ian (2017) A First Look
at the Year in Computing. In: ITiCSE Conference, 3-5 July 2017, Bologna, Italy.

DOI

https://doi.org/10.1145/3059009.3059049

Link to record in KAR

http://kar.kent.ac.uk/61056/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/80841804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A First Look at the Year in Computing
Sebastian Dziallas
School of Computing

University of Kent
Canterbury, CT2 7NF, England

+44 1227 827684

sd485@kent.ac.uk

Sally Fincher
School of Computing

University of Kent
Canterbury, CT2 7NF, England

+44 1227 824061

s.a.fincher@kent.ac.uk

Colin G. Johnson
School of Computing

University of Kent
Canterbury, CT2 7NF, England

+44 1227 762811

c.g.johnson@kent.ac.uk

Ian Utting
School of Computing

University of Kent
Canterbury, CT2 7NF, England

+44 1227 823811

i.a.utting@kent.ac.uk

ABSTRACT

In this paper, we discuss students’ expectations and experiences in

the first term of the Year in Computing, a new programme for

non-computing majors at the University of Kent, a public research

university in the UK. We focus on the effect of students’ home

discipline on their experiences in the programme and situate this

work within the context of wider efforts to make the study of

computing accessible to a broader range of students.

CCS Concepts

• Social and professional topics~Computer science education

Keywords

non-majors; curriculum; qualitative research; student experience

1. INTRODUCTION
In recent years, a push to broaden the base of students studying

computing has taken place. These efforts are not merely limited to

undergraduate students. Jeannette Wing argued in 2006 that

“computational thinking” is a skill everyone should possess [21].

Furthermore, in 2016, President Barack Obama announced the

Computer Science for All initiative in the United States with the

goal of providing opportunities for all students from kindergarten

through secondary education to learn computer science [5].

Computing has also moved to embrace a more inclusive view of

what is part of the discipline, particularly in relation to other

fields. The authors of the 2013 ACM/IEEE curriculum report

called this the “big tent view” of computing. They wrote:
As CS expands to include more cross-disciplinary

work and new programs of the form

“Computational Biology,” “Computational

Engineering,” and “Computational X” are
developed, it is important to embrace an outward-

looking view that sees CS as a discipline actively

seeking to work with and integrate into other

disciplines. [12]

Programmes for non-majors in computing can be roughly

separated into three categories: those looking to broaden the

student base in computing; to provide or increase the skills of

students in their home discipline (“upskilling”); and to convert
students into computing graduates.

An example for broadening the student base is the course for non-

STEM students on media computation that Guzdial and Forte

describe in their work. As part of their process of creating the

course, they decided to maintain similar curricular goals as other

introductory courses, while changing its context to motivate

students [9, 10]. In the resulting course, students create and

manipulate media, but still learn to program.

Other efforts are more concerned with providing students with a

set of specific set of computing skills they can use in conjunction

with their own subject area. For instance, software carpentry is a

formal programme that stands outside of traditional institutional

boundaries and brings together students from STEM backgrounds.

It is designed to specifically address “small-scale and immediately

practical issues” in software development using tools and

techniques, such as version control and debugging [20]. Another

example in this area is the work of DeJongh and LeBlanc, who

intended to bring computer science concepts and tools to

bioinformatics students [3].

At the university level, course offerings for non-majors have

increasingly attracted interest, including from mainstream news

organisations [18]. There is a wide range of courses: some are

intended to introduce students to wide range of different concepts

and applications (such as problem solving [13], algorithms and

computational thinking [6], internet applications and web

programming [8, 14]), others form the basis of a sequence of

courses (and have adopted the have adopted the CS0 terminology

[1, 11, 17]). At liberal arts institutions, mainly in the US, students

may elect to complete a minor degree in computer science in

addition to their major degree [4]. And in the UK, students can

enrol in joint honours programmes that allow them to study two

subjects during their time at university.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ITiCSE '17, July 03-05, 2017, Bologna, Italy
Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM 978-1-4503-4704-4/17/07…$15.00

DOI: http://dx.doi.org/10.1145/3059009.3059049

mailto:Permissions@acm.org

Finally, in terms of “converting” students who have already
completed a degree in another subject, universities in the UK offer

conversion MSc programmes which are open to all students with

good results in their first degree.

In this paper, we examine the newly launched Year in Computing

at the School of Computing at the University of Kent. The Year in

Computing is currently in its first year and provides an

opportunity for students from other disciplines to study

computing. The programme is similar to MSc conversion

programmes; however, those are taught at a postgraduate level

and are intended to cover a large fraction of the core of Computer

Science, whilst the Year in Computing is an undergraduate

programme with a distinctive curriculum and a focus on web

technologies. It is also an effort to both broaden the student base

in computing at the University and to help students develop

computing skills they can use in their home discipline or more

generally in their future careers.

2. CONTEXT OF THE YEAR IN

COMPUTING
Undergraduate degrees in the United Kingdom generally take

three years to complete, although there are opportunities for an

additional Year in Industry or a Year Abroad. Students declare

their intended major upon application to university. Some students

choose to enrol in so-called joint honours programmes that allow

them to study two subjects (that do not necessarily have to be

closely related) over the normal duration of an undergraduate

degree. In a joint honours programme, each department is

responsible for delivering their own respective courses, so

students generally take existing courses together with

undergraduates who are in single degree programmes. As a result,

joint honours programmes often do not facilitate cohort formation

among students. They also lack a coherent curriculum structure,

while requiring that students complete the course requirements for

both subject areas in a limited time, and often suffer from hidden

pre-requisites in the courses they do take.

In contrast, the Year in Computing is a free-standing, self-

contained additional year, offered to undergraduate students doing

any degree in the University that does not contain computing.

Students may take the Year in Computing in between the second

and third year of their degree, or after year three. During the year,

students work exclusively in the School of Computing. The

programme operates as a stand-alone year of study in which

students are taught as a single cohort; all students in the

programme take the same courses at the same time as part of a

coherent curriculum, instead of individual courses with other

undergraduates. This allows for cohort identity formation and

obviates issues of timetabling and pre-requisites that otherwise

plague joint honours programmes.

The Year in Computing as a whole is “pass / fail”. Successful
students ultimately graduate with their degree title augmented

with the designation “with a Year in Computing”. If a student fails

their Year in Computing, they return to their home discipline and

graduate without the additional designation. So whilst the grades

they receive in the courses appear on their transcript, they do not

affect the classification of their degree which remains wholly

dependent on their performance in their home discipline. Degree

classification is a significant (although rather crude) measure of

overall student achievement in the UK, used as a gateway to

further study and employment, which does not reflect potentially

wide disparities between performance when students are studying

more than one subject, as in a traditional joint honours

programme.

3. CURRICULAR CONTENT
The Year in Computing is aimed both at students who want to

“convert” into computing for vocational reasons, and for students
who want to integrate computing with their home degree studies.

The latter could include students who plan to integrate computing

into a scientific discipline (e.g. in bioinformatics), to use data

science skills in a social science area (e.g. in analysis of data from

social networks), or to use computing technologies as part of an

artistic practice.

Students in the programme follow a curriculum specifically

developed for this context. The courses were designed from the

ground up (or, in the case of HCI and web technologies adapted

versions of the modules that undergraduate students in computer

science take). This allows us to focus on the aspects most relevant

to the students in the programme.

Courses for non-majors traditionally focus either on a breadth of

computing topics or depth in terms of programming [17]. Whilst

the introductory courses in the BSc in Computer Science at the

University of Kent rely on Java as a first programming language

and include a large component of logic and discrete mathematics,

we decided to focus instead on web technologies. This allows us

to introduce a wide range of computing topics in the context of the

web (providing breadth) while exposing students to an entire stack

of software (addressing depth).

Table 1. Courses in the Year in Computing

Autumn Term Spring Term

An Introduction to

Computer Systems:

From the desktop to the

global Internet. (7.5 ECTS

credits)

Solving Problems with Data:

Collecting, analysing and

portraying data from specific

domains, businesses, and the

world. (7.5 credits)

Human Computer

Interaction and User

Experience:

Designing information and

applications for their users

and their purpose (7.5

credits)

Web Development:

Building and managing large

scale, dynamic, web

applications. (7.5 credits)

An Introduction to

Programming and Web

Technologies (15 credits):

 Presenting

information (HTML

and CSS)

 A general

introduction to

programming,

through coding in

Javascript

 Storing information

(databases and SQL).

 Dynamically

generating content for

web pages from

stored data (PHP).

Year in Computing Project (15

credits):

Putting learning into practice in a

larger piece of work, perhaps

related to a domain in the home

discipline.

The curriculum for the Year in Computing (Table 1) then covers

“back-end” topics such as understanding computer operating
systems and networks, learning programming (through

JavaScript), storing and manipulating data, and integrating with a

Web server. At the “front-end” it includes producing web pages

using HTML, CSS and JavaScript that work well, look good and

are easy to interact with.

We also wanted to include explicit opportunities for students to

work in the context of their home discipline. Both the Solving

Problems with Data course and (particularly) the Project

component encourage students to use data and address problems

from their own disciplines.

Performance in the programme is assessed by means of practical

coursework and a small number of written examinations.

By the end of the programme, regardless of whether they intend to

continue to work in computing or plan to return to their home

discipline, we expect students to be able to:

 Understand the role of technology and how it is used in

the contemporary world.

 Have a good foundational knowledge of coding that is

focused on the ideas of programming, not just learning a

specific language.

 Build dynamic, modern web-based systems.

 Understand how data can be used to tackle complex

problems.

 Have a practical grasp of methods for presenting data

and designing interactions with computer-based

systems.

4. CHARACTERISTICS OF THE

STUDENT BODY
The University of Kent is a medium-size university with

approximately 15,000 undergraduate students. Within this student

body, only those students in their second or third year who are not

pursuing a degree in Computing are eligible to apply to the Year

in Computing. There are currently 34 students enrolled in the

programme.

One pre-requisite for admission to the Year in Computing is

success as a student at the University to date, not any given

subject knowledge about computing. (The Year in Computing is

not for students who are unsatisfied with their performance in

their home discipline and looking to switch into computing.) A

side-effect of only recruiting students from the same university is

that they are already familiar with the campus, the institutional

processes and (to an extent) University systems, thus significantly

reducing their initial familiarisation difficulties compared to

incoming undergraduate students. This familiarity can also be a

“false friend” however, highlighted in the differences in

expectations (of how and where to study) between the Year in

Computing and students’ home subjects.
The application process for the programme is also deliberately

light-weight: Students submit a formless application statement

expressing why they are interested in the Year in Computing and

take part in an interview designed to assess their enthusiasm about

engaging with computing. The student body resulting from this

process consists of students from a great variety of different

backgrounds.

As well as disparity of academic background, they also have a

wide variety of previous experience of computers and coding,

either as part of their prior academic experience in secondary or

tertiary education, or as “hobbyists”. Although this was captured
in the application process, and students who had (effectively)

already covered the syllabus were excluded, judgements at the

lower end of the experience range have been less robust.

Undergraduate students in Computing at most institutions are

traditionally relatively homogenous: they are predominantly male

and technology-focussed. For example, only 15% of the students

in the BSc in Computer Science at the University of Kent are

women. In contrast, 40% of the students in the Year in Computing

are women. Furthermore, 47% of the 34 students in the

programme are completing non-STEM degrees at the University.1

Studying this first Year in Computing will enrich our

understanding and inform our approach to making computing

attractive as a destination subject for students from a wider range

of backgrounds and with a wider range of personal characteristics

than those who typically choose this subject area.

5. THIS WORK
In this paper, we provide a ‘first look’ at the first term of the

programme. We specifically focus on the role of students’ home
discipline, as well as their experiences in the programme to date.

We reviewed both students’ application statements and their
responses to an end-of-term survey conducted after the first

semester in the course. (This was not the generic module

evaluation form used for all courses, although some students took

the opportunity to use it to provide feedback.) The survey asked

students about their expectations for the course, their previous

learning experiences at University, the amount of time they spent

on the different modules, their own personal and professional

goals, their assessment of the skills they developed, and the effect

the Year in Computing on them to date. Out of 34 students in the

programme, 12 responded to the end-of-term survey (35%).

6. THEMES

6.1 Why Students Chose to Apply
Students expressed different motivations in their application

statements. Some of them were looking to enhance their

employability within the context of their home discipline,

particularly in STEM fields, such as chemistry and physics.

“Throughout my course, we have been taught that

the ability to collect and analyse data is a central

skill for forensic scientists and I believe that

adding this additional qualification will be very

useful for my future job prospects in this field.”

“I became interested in computing after my first

year module in ‘computing skills’ where I learnt

some basics in coding. This interest propelled me

to my project in computational chemistry. [It] has

made me want to learn more about computing …
that would give me an edge when applying for

jobs around chemistry and computational

chemistry.”

“This is something I've done as an amateur for

quite a while and having some proper grounding

would allow me to do computing on a more

professional basis. It would also give me skills

that would apply to almost any area of physics

work.”

But the home discipline did not play a decisive role for all

students. One anthropology student was interested in the subject

1 We are not providing a full list of disciplines as students might

otherwise be identifiable due to the small number of

participants.

matter and felt that facility with technical systems was important

regardless of discipline.

“I am self-taught, and being formally taught

computing would allow me to polish my skills and

develop new ones. Although computing is less

applicable to my degree than others, I think that

technical knowledge and web-related development

is important regardless of academic background.”

And for one student, who was unable to find a joint honours

programme that offered their subjects of interest, the Year in

Computing provided them a chance they never had:

“Unfortunately, while applying for University, I

had to choose only one subject and could not find

any proper combinations with architecture and

computing. However, with this new ‘Year in
Computing’ being launched by the University, I
feel that I have an exceptional opportunity to

study a combination that I truly want.”

Not all students who were offered spaces in the Year in

Computing ended up enrolling. In fact, the reasons why students

did not choose to do a Year in Computing matched common

reasons why students do not take part in a placement year: they

could not arrange accommodation in time or did not want to miss

graduating with their cohort in their home discipline [7].

6.2 Expectations & Reality
When we surveyed students at the end of their first term, 8 out of

12 (67%) expressed that the course had met their expectations,

particularly with regards to both breadth and depth of the

curriculum.

“I expected a general overview of aspects of

computing, which for the most part I got.”

“I did expect to learn programming skills and the

course is what I expected it to be.”

However, some students indicated that certain aspects were

different than they had expected. Their comments focussed

particularly on the individual modules—Introduction to Computer

Systems, HCI/UX, and Programing and Web Technologies

(which students commonly referred to as “the programming

module”). This was not entirely surprising to us, as the curriculum
structures material into the three distinct courses which each have

their own a set of teaching staff.

“I expected to get an introduction into the world

of computing, starting with some basic

programming and understanding of computer

systems. I don’t really understand Computer
Systems, but I’m getting better at programming,

which is great!”

“It’s what I expected, apart from [the HCI

module]. I was expecting some kind of design

element to the course but it [the HCI module] went

beyond what I had expected.”

“[The programming module] definitely makes it

very clear when you’ve made progress and really

makes you feel like you are learning and

understanding and that the work you’re putting in

is actually producing something which is very

motivating and encouraging especially in

comparison to [the Computer Systems module]

which can feel like swimming in quicksand at

times.”

Of course, not all of the students’ learning experiences were

positive and for some students the course has been harder than

expected.

“I believe some of the tasks have been too tricky

for a beginner.”

“I expected the course to be for someone who is a

complete novice […].”

It is not immediately clear whether this student was expecting a

course on computer literacy or computational thinking, rather than

one with significant programming elements. Some of the students

who expressed difficulty with the course included a different kind

of reflection.

“It’s made me feel intimidated to go into

computing-based jobs, and question my ability to

handle next term.”

“I was quite disheartened by finding JavaScript a

particularly difficult topic to study - it made me

feel like maybe going into bioinformatics wouldn't

be the best idea […].”

We take both these expressions – of the current challenge of the

course and of an imagined future with regard to computing – as

expressions of self-efficacy. According to Bandura, self-efficacy

is defined as the belief in one’s ability to accomplish a task [2].

These comments then appear to reflect the students’ own
perceived ability to succeed in the Year in Computing as a result

of their experiences in the first term. Wiedenbeck analysed factors

affecting non-majors’ experiences when learning to program and

found that self-efficacy, as well as knowledge organisation,

played a central role in their experiences [19]. Lishinski et al.

showed for students in a CS1 course that students’ motivation
affects their self-efficacy, which affects their performance in the

course, which in turn affects their self-efficacy in a virtuous (or

vicious) cycle [15].

For our students there are two, related, aspects to increased self-

efficacy. One is mastery of the taught material, being able to

complete the assessments, write required programs and design

interfaces. In this they work by themselves and with others in the

cohort, invoking three of Bandura’s elements of self-efficacy—
individual achievement, observation of achievement of peers and

verbal encouragement of others. However, there is a second

element, more fleeting in this data, which is one of general

familiarity with computational environments and systems—not

something that is explicitly included in the course. Thus we read

hints that the less “literacy” experience a Year in Computing

student has, the lower their belief in their own self-efficacy which

becomes a barrier for their further learning. “I expected [it] to be
for a complete novice” suggests the lack of an entirely separate set

of skills.

This presents an opportunity for future work for us and we intend

to follow up with these students in the future to explore their

expectations and experiences further. Additionally, it has

prompted us to add a more explicit exploration of an applicant’s
familiarity with technology at interview.

6.3 Contrast to previous experience
Because we are ultimately interested in how metacognitive skills

of “being a good student” transfer between disciplines, students

were also asked to identify contrasts to their previous learning

experiences in their home discipline at University. One of the

students who found the course harder than expected was surprised

to find that they were falling behind despite attending all of the

scheduled class sessions.

“I did feel lost by the wayside for most of the term

and easily left behind in terms of understanding

the course content even when I was attending my

lectures/classes.”

Thus suggesting that “attending all lectures/classes” was sufficient
to this student’s previous academic success, perhaps generally
sufficient to academic success in their home discipline.

Conversely, one student arrived at the first Lab session for the

programming course having already completed all the exercises,

and being prepared to discuss their thinking (as, presumably, in

seminars in their home discipline), but was surprised to find that

they were expected to do it all (again) in the Lab.

Students were also surprised by the accessibility of staff in the

programme.

“The coding [in the programming module] is

exactly what I expected and I have really enjoyed

that section the most. There are more complicated

Computer Systems than I thought there would be,

but there is far more support than I could have

dreamt of.”

"The support offered far supersedes expectations

and the approachability of the staff is fantastic.”

When we asked students what kind of advice they would offer to

incoming students, they focussed on practicing both ahead of and

during the term, rather than asking for help, in their responses:

half of the students who responded to the survey said that they

would tell their fellow students to “keep practicing”. This advice

was often focussed on the programming language used in the

course, JavaScript:

“Mess around with JavaScript beforehand, really

try and get to grips with it, ask for plenty of help

when stuck.”

“Do a lot more outside work for programming

than is given, i.e. on Codecademy / w3schools

etc.”

Other differences in contrast to students’ previous experiences at
university concerned assessments, particularly in contrast how

they are set in the humanities.

“In my previous degree, there were 4 big essays

all due in the last two weeks of term. I really like

the way there is smaller continuous assessments,

though there are more exams than I thought there

would be.”

“The spread of assignments is generally better

than multiple essays due at the end of week 6 and

end of week 12, and the variety is refreshing.”

“The assignments are much more involved and the

coursework is more work-oriented rather than

test-oriented.”

One student observed that the assessment criteria were also

different:

“I would say the standard of assessment is

different though however, in my home discipline of

biochemistry, assessments given are expected to

be as perfect as possible however for this course,

mainly for programming, the code can not work

and still be marked reasonably high.”

6.4 Goals & Changes
We were also interested in the effect of the Year in Computing.

We asked students about their personal and professional goals and

whether their experiences this term had changed what they

intended to do in the future. Two students indicated that they were

uncertain about their future goals. For others, the Year in

Computing seemed intended to augment any kind of work they

might do in the future.

“To be successful in any career I go into.”

“[To] secure a job before graduating, not having

to move home after graduation situation

permitting.”

But it also served as a way for students to expand on their home

discipline.

“I would like to eventually go on and study a

bioinformatics masters and then either stay in

academia looking at protein structure and

function prediction programs […] or going into
industry and using bioinformatics as a skill for

investigating possible pharmaceutical drug

targets.”

Again others had specific ideas about the work they planned to do

after graduating, with a specific focus on computing.

“I want to focus on Web Development or Data

Control as a profession within a technology

focussed business.”

“Simulation, data handling, software

development.”

“I hope to do the MSc conversion course and go

into software development, data management or

marketing.”

For these three students, the Year in Computing reinforced their

confidence in choosing a career in a computing-related field.

“It has made me more certain that I want to go

into computer based careers in the future and

assured my passion for it that I was unsure of at

the beginning.”

 “I feel better equipped for creating applications

and may go more down that route”

“Rather than a specific focus on marketing my

experiences have massively opened my eyes to

other options and piqued my interest in computer

science fields and showed how related marketing

can be to design and other things we have done

this term.”

For these students, achievement in course to date has

increased their self-efficacy and confirmed their choice to

study an additional year of Computing. The course also

marked a significant change for other students, although

not such a directly confirmatory one.

“I have chosen to go into teaching, which is a

career I never thought of much before this

course.”

“This course did make me consider becoming a

web designer.”

Indeed, one student went so far as to indicate they “cannot
imagine having to go back to my home degree now” and advised

future students to take the Year in Computing after their third (and

not the second) year as a result. In the future, we plan to follow up

with students to conduct in-depth interviews to understand what

experiences led to these changes for them.

7. CONCLUSION
The Year in Computing provides an opportunity for non-

computing majors at the University of Kent to extend their degree

programmes by studying computing. It also provides work-related

skills to support students in their future study, research, or careers.

For us, as teachers and researchers, the Year in Computing

provides a rare chance to teach and study a stable and coherent

group of non-traditional students (who did not intend to become

Computing majors when entering University) over an extended

period, and affords us insights not only into their development in

computing, but also into the hidden assumptions in our own

discipline and practices.

On an institutional level, the Year in Computing broadens the

School of Computing’s student base and provides resilience

against fluctuation in undergraduate or taught postgraduate

numbers. It also provides other Schools in the University with a

model to offer an intercalated year in their own discipline (e.g. the

Year in Business or the Year in Quantitative Methods proposed as

part of the UK national Q-Step programme [16]).

8. FUTURE WORK
This work provided a first look at the Year in Computing at the

University of Kent, with a particular focus on the effect of

students’ home discipline on their experience studying computing.
In the future, we also plan to use both narrative and traditional

qualitative methods to examine the transfer of metacognitive skills

(of being a “good student”) across disciplinary contexts, the

curricular and pedagogical adaptations made by staff in respect of

students’ diverse disciplinary backgrounds, and the longitudinal

effect of the programme on students’ experience after graduation.

We intend to follow up with this first cohort of students at the end

of their second term to conduct in-depth interviews and to explore

the effect of both their home discipline and self-efficacy further.

And eventually, we would like to follow them back to their home

disciplines and out to work.

9. REFERENCES
[1] Bailey, T. and Forbes, J. 2005. Just-in-time Teaching for

CS0. Proceedings of the 36th SIGCSE Technical

Symposium on Computer Science Education (New York,

NY, USA, 2005), 366–370.

[2] Bandura, A. 1977. Self-efficacy: Toward a unifying theory

of behavioral change. Psychological Review. 84, 2 (1977),

191–215.

[3] Bioinformatics in the Computer Science Curriculum:

http://www.cs.hope.edu/~dejongh/bioinformatics/sigcse/.

Accessed: 2017-01-13.

[4] Cliburn, D.C. 2006. A CS0 Course for the Liberal Arts.

Proceedings of the 37th SIGCSE Technical Symposium on

Computer Science Education (New York, NY, USA,

2006), 77–81.

[5] Computer Science For All: 2016.

https://www.whitehouse.gov/blog/2016/01/30/computer-

science-all. Accessed: 2017-01-09.

[6] Cortina, T.J. 2007. An Introduction to Computer Science

for Non-majors Using Principles of Computation.

Proceedings of the 38th SIGCSE Technical Symposium on

Computer Science Education (New York, NY, USA,

2007), 218–222.

[7] Fincher, S. and Finlay, J. 2016. Computing Graduate

Employability: Sharing Practice. Council of Professors and

Heads of Computing.

[8] Gousie, M.B. 2006. A Robust Web Programming and

Graphics Course for Non-majors. Proceedings of the 37th

SIGCSE Technical Symposium on Computer Science

Education (New York, NY, USA, 2006), 72–76.

[9] Guzdial, M. 2003. A Media Computation Course for Non-

majors. Proceedings of the 8th Annual Conference on

Innovation and Technology in Computer Science

Education (New York, NY, USA, 2003), 104–108.

[10] Guzdial, M. and Forte, A. 2005. Design Process for a Non-

majors Computing Course. Proceedings of the 36th

SIGCSE Technical Symposium on Computer Science

Education (New York, NY, USA, 2005), 361–365.

[11] Hickey, T.J. 2004. Scheme-based Web Programming As a

Basis for a CS0 Curriculum. Proceedings of the 35th

SIGCSE Technical Symposium on Computer Science

Education (New York, NY, USA, 2004), 353–357.

[12] Joint Task Force on Computing Curricula 2013. Computer

Science Curricula 2013: Curriculum Guidelines for

Undergraduate Degree Programs in Computer Science.

ACM.

[13] Joyce, D. 1998. The Computer As a Problem Solving Tool:

A Unifying View for a Non-majors Course. Proceedings of

the Twenty-ninth SIGCSE Technical Symposium on

Computer Science Education (New York, NY, USA,

1998), 63–67.

[14] Kurkovsky, S. 2007. Making Computing Attractive for

Non-majors: A Course Design. J. Comput. Sci. Coll. 22, 3

(Jan. 2007), 90–97.

[15] Lishinski, A. et al. 2016. Learning to Program: Gender

Differences and Interactive Effects of Students’
Motivation, Goals, and Self-Efficacy on Performance.

Proceedings of the 2016 ACM Conference on International

Computing Education Research (New York, NY, USA,

2016), 211–220.

[16] Q-Step | Nuffield Foundation:

http://www.nuffieldfoundation.org/q-step. Accessed: 2017-

01-15.

[17] Reed, D. 2001. Rethinking CS0 with JavaScript.

Proceedings of the Thirty-second SIGCSE Technical

Symposium on Computer Science Education (New York,

NY, USA, 2001), 100–104.

[18] Stross, R. 2012. Computer Science for Non-Majors Takes

Many Forms. The New York Times.

[19] Wiedenbeck, S. 2005. Factors Affecting the Success of

Non-majors in Learning to Program. Proceedings of the

First International Workshop on Computing Education

Research (New York, NY, USA, 2005), 13–24.

[20] Wilson, G. 2006. Software Carpentry: Getting Scientists to

Write Better Code by Making Them More Productive.

Computing in Science Engineering. 8, 6 (Nov. 2006), 66–
69.

[21] Wing, J.M. 2006. Computational Thinking. Commun.

ACM. 49, 3 (Mar. 2006), 33–35.

