551 research outputs found

    Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization

    Full text link
    Successful preparation of polymer nanocomposites, exploiting graphene-related materials, via melt mixing technology requires precise design, optimization and control of processing. In the present work, the effect of different processing parameters during the preparation of poly (butylene terephthalate) nanocomposites, through ring-opening polymerization of cyclic butylene terephthalate in presence of graphite nanoplatelets (GNP), was thoroughly addressed. Processing temperature (240{\deg}C or 260{\deg}C), extrusion time (5 or 10 minutes) and shear rate (50 or 100 rpm) were varied by means of a full factorial design of experiment approach, leading to the preparation of polybutylene terephthalate/GNP nanocomposite in 8 different processing conditions. Morphology and quality of GNP were investigated by means of electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry and Raman spectroscopy. Molecular weight of the polymer matrix in nanocomposites and nanoflake dispersion were experimentally determined as a function of the different processing conditions. The effect of transformation parameters on electrical and thermal properties was studied by means of electrical and thermal conductivity measurement. Heat and charge transport performance evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; in particular, gentle processing conditions (low shear rate, short mixing time) turned out to be the most favourable condition to obtain high conductivity values

    Morphology and conduction properties of graphite-filled immiscible PVDF/PPgMA blends

    Get PDF
    Graphite was dispersed in immiscible polyvinylidene "uoride/maleated polypropylene (PVDF/PPgMA) blends to improve electrical and thermal conductive properties by building a double-percolation structure. The morphology of PVDF/PPgMA blends was !rst investigated for several compositions by selective solvent extraction, scanning electron microscopy, and dynamic mechanical thermal analysis. Blends of PVDF and PPgMA were prepared in different relative fractions, and a PVDF/PPgMA ratio of 7/3 showed a well-co-continuous structure. From this blend, the morphology and properties of composites with different concentrations of graphite were investigated to prepare double-percolated structures. Graphite was observed to selectively localize in the PPgMA phase. The electrical and thermal conductive properties of graphite-containing blends were measured, showing enhanced conductivity for the double-percolation structures compared with single-polymer composites containing the same graphite loadings

    A phase II trial of CHOP chemotherapy followed by yttrium 90 ibritumomab tiuxetan (Zevalin) for previously untreated elderly diffuse large B-cell lymphoma patients

    Get PDF
    Background: A prospective, single-arm, open-label, nonrandomized phase II combination chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) plus radioimmunotherapy trial was conducted to evaluate the efficacy and safety in untreated elderly diffuse large B-cell lymphoma (DLBCL) patients. Patients and methods: From February 2005 to April 2006, in our institute we treated 20 eligible elderly (age 6560 years) patients with previously untreated DLBCL using a novel regimen consisting of six cycles of CHOP chemotherapy followed 6-10 weeks later by 90Y ibritumomab tiuxetan. Results: The overall response rate to the entire treatment regimen was 100%, including 95% complete remission (CR) and 5% partial remission. Four (80%) of the five patients who achieved less than a CR with CHOP improved their remission status after radioimmunotherapy. With a median follow-up of 15 months, the 2-year progression-free survival was estimated to be 75%, with a 2-year overall survival of 95%. The 90Y ibritumomab tiuxetan toxicity included grade 653 hematologic toxicity in 12 of 20 patients; the most common grade 653 toxic effects were neutropenia (12 patients) and thrombocytopenia (7 patients). Transfusions of red blood cells and/or platelets were given to one patient. Conclusion: This study has established the feasibility, tolerability, and efficacy of this regimen for elderly patients with DLBCL

    Electric control of magnetism at the Fe/BaTiO3 interface

    Get PDF
    Interfacial magnetoelectric coupling is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO3 system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BaTiO3 dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high-resolution electron microscopy and first principles calculations, we report on an undisclosed physical mechanism for interfacial magnetoelectric coupling in the Fe/BaTiO3 system. At this interface, an ultrathin oxidized iron layer exists, whose magnetization can be electrically and reversibly switched on and off at room temperature by reversing the BaTiO3 polarization. The suppression/recovery of interfacial ferromagnetism results from the asymmetric effect that ionic displacements in BaTiO3 produces on the exchange coupling constants in the interfacial-oxidized Fe layer. The observed giant magnetoelectric response holds potential for optimizing interfacial magnetoelectric coupling in view of efficient, low-power spintronic devices

    Frataxin participates to the hypoxia-induced response in tumors

    Get PDF
    Defective expression of frataxin is responsible for the degenerative disease Friedreich's ataxia. Frataxin is a protein required for cell survival since complete knockout is lethal. Frataxin protects tumor cells against oxidative stress and apoptosis but also acts as a tumor suppressor. The molecular bases of this apparent paradox are missing. We therefore sought to investigate the pathways through which frataxin enhances stress resistance in tumor cells. We found that frataxin expression is upregulated in several tumor cell lines in response to hypoxic stress, a condition often associated with tumor progression. Moreover, frataxin upregulation in response to hypoxia is dependent on hypoxia-inducible factors expression and modulates the activation of the tumor-suppressor p53. Importantly, we show for the first time that frataxin is in fact increased in human tumors in vivo. These results show that frataxin participates to the hypoxia-induced stress response in tumors, thus implying that modulation of its expression could have a critical role in tumor cell survival and/or progression

    Cytomegalovirus, Epstein–Barr virus and risk of breast cancer before age 40 years: a case–control study

    Get PDF
    We investigated whether there is an association between cytomegalovirus (CMV) and Epstein-Barr virus (EBV) IgG levels and risk of breast cancer before age 40 years. CMV and EBV IgG levels were measured in stored plasma from 208 women with breast cancer and 169 controls who participated in the Australian Breast Cancer Family Study (ABCFS), a population-based case-control study. CMV and EBV IgG values were measured in units of optical density (OD). Cases and controls did not differ in seropositivity for CMV (59 and 57% respectively; P=0.8) or EBV (97 and 96% respectively; P=0.7). In seropositive women, mean IgG values were higher in cases than controls for CMV (1.20 vs 0.98 OD, P=0.005) but not for EBV (2.65 vs 2.57 OD, P=0.5). The adjusted odds ratios per OD unit were 1.46 (95% CI 1.06-2.03) for CMV IgG and 1.11 (0.93-1.33) for EBV IgG. The higher mean CMV IgG levels found in women with breast cancer could be the result of a more recent infection with CMV, and may mean that late exposure to CMV is a risk factor for breast cancer
    • …
    corecore