27 research outputs found

    Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of incompressible electrically conducting fluid

    Get PDF
    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density, nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α\alpha-effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.Comment: 37 pages, 11 figures, 54 reference

    A conditional mutation in a wheat (Triticum aestivum L.) gene regulating root morphology

    Get PDF
    Key message: Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Abstract: Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.) that when grown in soil with high Ca 2+ develops a larger rhizosheath accompanied with shorter roots than the wild type. In wheat, rhizosheath size is a reliable surrogate for root hair length and this was verified in the mutant which possessed longer root hairs than the wild type when grown in high Ca 2+ soil. We named the mutant Stumpy and showed it to be due to a single semi-dominant mutation. The short root phenotype at high Ca 2+ was due to reduced cellular elongation which might also explain the long root hair phenotype. Analysis of root cell walls showed that the polysaccharide composition of Stumpy roots is remodelled when grown at non-permissive (high) Ca 2+ concentrations. The mutation mapped to chromosome 7B and sequencing of the 7B chromosomes in both wild type and Stumpy identified a candidate gene underlying the Stumpy mutation. As part of the process to determine whether the candidate gene was causative, we identified wheat lines in a Cadenza TILLING population with large rhizosheaths but accompanied with normal root length. This finding illustrates the potential of manipulating the gene to disconnect root length from root hair length as a means of developing wheat lines with improved efficiency of nutrient and water uptake. The Stumpy mutant will be valuable for understanding the mechanisms that regulate root morphology in wheat.</p

    A conditional mutation in a wheat (Triticum aestivum L.) gene regulating root morphology

    Get PDF
    Key message: Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Abstract: Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.) that when grown in soil with high Ca 2+ develops a larger rhizosheath accompanied with shorter roots than the wild type. In wheat, rhizosheath size is a reliable surrogate for root hair length and this was verified in the mutant which possessed longer root hairs than the wild type when grown in high Ca 2+ soil. We named the mutant Stumpy and showed it to be due to a single semi-dominant mutation. The short root phenotype at high Ca 2+ was due to reduced cellular elongation which might also explain the long root hair phenotype. Analysis of root cell walls showed that the polysaccharide composition of Stumpy roots is remodelled when grown at non-permissive (high) Ca 2+ concentrations. The mutation mapped to chromosome 7B and sequencing of the 7B chromosomes in both wild type and Stumpy identified a candidate gene underlying the Stumpy mutation. As part of the process to determine whether the candidate gene was causative, we identified wheat lines in a Cadenza TILLING population with large rhizosheaths but accompanied with normal root length. This finding illustrates the potential of manipulating the gene to disconnect root length from root hair length as a means of developing wheat lines with improved efficiency of nutrient and water uptake. The Stumpy mutant will be valuable for understanding the mechanisms that regulate root morphology in wheat.</p

    Cotton breeding in Australia : meeting the challenges of the 21st century

    Get PDF
    The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program is the sole breeding effort for cotton in Australia, developing high performing cultivars for the local industry which is worth∼AU$3 billion per annum. The program is supported by Cotton Breeding Australia, a Joint Venture between CSIRO and the program’s commercial partner, Cotton Seed Distributors Ltd. (CSD). While the Australian industry is the focus, CSIRO cultivars have global impact in North America, South America, and Europe. The program is unique compared with many other public and commercial breeding programs because it focuses on diverse and integrated research with commercial outcomes. It represents the full research pipeline, supporting extensive long-term fundamental molecular research; native and genetically modified (GM) trait development; germplasm enhancement focused on yield and fiber quality improvements; integration of third-party GM traits; all culminating in the release of new commercial cultivars. This review presents evidence of past breeding successes and outlines current breeding efforts, in the areas of yield and fiber quality improvement, as well as the development of germplasm that is resistant to pests, diseases and abiotic stressors. The success of the program is based on the development of superior germplasm largely through field phenotyping, together with strong commercial partnerships with CSD and Bayer CropScience. These relationships assist in having a shared focus and ensuring commercial impact is maintained, while also providing access to markets, traits, and technology. The historical successes, current foci and future requirements of the CSIRO cotton breeding program have been used to develop a framework designed to augment our breeding system for the future. This will focus on utilizing emerging technologies from the genome to phenome, as well as a panomics approach with data management and integration to develop, test and incorporate new technologies into a breeding program. In addition to streamlining the breeding pipeline for increased genetic gain, this technology will increase the speed of trait and marker identification for use in genome editing, genomic selection and molecular assisted breeding, ultimately producing novel germplasm that will meet the coming challenges of the 21st Century

    Polysaccharide composition during cotton seed fibre development: temporal differences between species and in different seasons

    No full text
    Abstract Background Cotton seed fibres are long single-celled epidermal trichomes that first appear on the surface of the ovule at anthesis and then elongate rapidly over a period of 15–25 days until a secondary cell wall (SCW) begins to develop through a rapid increase in the deposition of microfibrillar cellulose between the plasma membrane and the primary cell wall that eventually terminates elongation. Quantitative measurements of the different polysaccharide components in both wall types over time and how they influence fibre quality can direct studies involved in enhancing fibre properties for yarn quality through cell wall manipulation or molecular breeding. Results A detailed chemical analysis of cell wall composition by differential solvent fractionation was used to identify the range of polysaccharides present in mature cotton fibres and used to validate a simpler total cell wall monosaccharide linkage analysis protocol for wall compositional analysis. Analysis of fibres from 5 days post-anthesis through maturity for three cultivated species, Gossypium hirsutum, G. barbadense, and G. arboreum, showed the dynamic nature of cell wall polysaccharide composition through fibre development and that it progressed differently for each species. Plants grown in the glasshouse during either autumn to winter or spring to summer and within each species had fibre qualities and temporal aspects of cell wall development that were different for each season. Notably, the timing of the deposition of the SCW was delayed in winter grown plants and appeared to influence key fibre quality properties. Conclusions These results suggest that the temporal aspects of cell wall polysaccharide biogenesis during fibre development influence final fibre quality, and this timing is determined by both genetic and environmental factors. The onset of SCW synthesis appears to be a critical factor coinciding with termination of fibre elongation and specifying the duration of wall thickening that then affects fibre length and other wall-associated quality parameters that ultimately determine yarn quality

    Glycan profiling of plant cell wall polymers using microarrays

    No full text
    Plant cell walls are complex matrixes of heterogeneous glycans which play an important role in the physiology and development of plants and provide the raw materials for human societies (e.g. wood, paper, textile and biofuel industries)(1,2). However, understanding the biosynthesis and function of these components remains challenging. Cell wall glycans are chemically and conformationally diverse due to the complexity of their building blocks, the glycosyl residues. These form linkages at multiple positions and differ in ring structure, isomeric or anomeric configuration, and in addition, are substituted with an array of non-sugar residues. Glycan composition varies in different cell and/or tissue types or even sub-domains of a single cell wall(3). Furthermore, their composition is also modified during development(1), or in response to environmental cues(4). In excess of 2,000 genes have Plant cell walls are complex matrixes of heterogeneous glycans been predicted to be involved in cell wall glycan biosynthesis and modification in Arabidopsis(5). However, relatively few of the biosynthetic genes have been functionally characterized (4,5). Reverse genetics approaches are difficult because the genes are often differentially expressed, often at low levels, between cell types(6). Also, mutant studies are often hindered by gene redundancy or compensatory mechanisms to ensure appropriate cell wall function is maintained(7). Thus novel approaches are needed to rapidly characterise the diverse range of glycan structures and to facilitate functional genomics approaches to understanding cell wall biosynthesis and modification. Monoclonal antibodies (mAbs)(8,9) have emerged as an important tool for determining glycan structure and distribution in plants. These recognise distinct epitopes present within major classes of plant cell wall glycans, including pectins, xyloglucans, xylans, mannans, glucans and arabinogalactans. Recently their use has been extended to large-scale screening experiments to determine the relative abundance of glycans in a broad range of plant and tissue types simultaneously(9,10,11). Here we present a microarray-based glycan screening method called Comprehensive Microarray Polymer Profiling (CoMPP) (Figures 1 & 2)(10,11) that enables multiple samples (100 sec) to be screened using a miniaturised microarray platform with reduced reagent and sample volumes. The spot signals on the microarray can be formally quantified to give semi-quantitative data about glycan epitope occurrence. This approach is well suited to tracking glycan changes in complex biological systems(12) and providing a global overview of cell wall composition particularly when prior knowledge of this is unavailable
    corecore