1,450 research outputs found

    Effect of in-mould inoculant composition on microstructure and fatigue behaviour of heavy section ductile iron castings

    Get PDF
    In this paper, the influence of the in-mould inoculant composition on microstructure and fatigue behaviour of heavy section ductile iron (EN GJS 700-2) castings has been investigated. Axial fatigue tests under nominal load ratio R=0 have been performed on specimens taken from the core of large casting components. Metallographic analyses have been carried out by means of optical microscopy and important microstructural parameters that affect the mechanical properties of the alloy, such as nodule count, nodularity and graphite shape, were measured. Furthermore, Scanning Electron Microscopy was used to investigate the fracture surfaces of the samples in order to identify crack initiation and propagation zones. Cracks initiation sites have been found to be microshrinkages close to specimens\u2019 surface in most cases. It was found that in-mould inoculant composition strongly influences the alloy microstructure, such as nodule count and shrinkage porosities size, as well as the fatigue resistance of heavy section ductile iron castings

    Review of recent advances in local approaches applied to pre-stressed components under fatigue loading

    Get PDF
    Fatigue strength of mechanical components in the high cycle regime depends on both the applied loading and the intensity of any residual stress field induced by either non-homogeneous plastic deformation or the solidification of a local portion of material due to welding operations. In presence of geometric variations that are amenable to being modelled as a sharp V-notch, the residual stress distribution near the notch tip is singular and follows the same form as the solution obtained by Williams in 1952 where the intensity of the asymptotic stress field is quantified by the notch stress intensity factor (NSIF). However, the residual stress varies during fatigue loading and a stable value may be reached. Numerical models have been developed for the calculation of the residual NSIFs and their variation under fatigue loading. Taking advantage of these models, new local approaches have also been recently developed which are able to predict the fatigue strength of pre-stressed notched components. The present paper provides a brief review of such recent advances

    Understanding powder bed fusion additive manufacturing phenomena via numerical simulation

    Get PDF
    The increasing interest in additively manufactured metallic parts from industry has issued a formidable challenge to the academic and scientific world that is asked to design new alloys, optimize process parameters and geometry as well as guarantee the reliability of a new generation of load-bearing components. Unfortunately, understanding the interaction between different phenomena associated to metal-additive manufacturing processes is a very difficult task. In this scenario, numerical modelling emerges as a valid technique to face problems related to the influence of process parameters on metallurgical and mechanical properties of additively manufactured components. This contribution is aimed at summarizing the most important outcomes about metal-additive manufacturing process obtained via numerical simulation with particular reference to powder bed fusion techniques. The fundamentals of additive manufacturing numerical simulation will be also explained in detail. Thermal, metallurgical as well as mechanical aspects are covered

    Thermal load-induced notch stress intensity factors derived from averaged strain energy density

    Get PDF
    Under the hypothesis of steady-state heat transfer and plane-strain conditions, the intensity of the stress distributions ahead of sharp V-notch tips can be expressed in terms of thermal notch stress intensity factors (thermal NSIFs) which can be used for fatigue strength assessments of notched components. The calculation of thermal NSIFs requires both an uncoupled thermal-mechanical numerical analysis and a very refined mesh. For these reasons, the numerical simulation becomes considerably expensive and time-consuming above all if large 2D or 3D models have to be solved. Refined meshes are not necessary when the aim of the finite element analysis is to determine the mean value of the local strain energy density on a control volume surrounding the points of stress singularity. On the other hand, the NSIFs value can be directly determined by the strain energy density. In this work, the method for rapid calculations of NSIFs based on averaged strain energy density, recently published in literature, is extended to thermal problem

    On the use of the Peak Stress Method for the calculation of Residual Notch Stress Intensity Factors: a preliminary investigation

    Get PDF
    Residual stresses induced by welding processes significantly affect the engineering properties of structural components. If the toe region of a butt-welded joint is modeled as a sharp V-notch, the distribution of the residual stresses in that zone is asymptotic with a singularity degree which follows either the linear-elastic or the elastic-plastic solution, depending on aspects such as clamping conditions, welding parameters, material and dimension of plates. The intensity of the local residual stress fields is quantified by the Residual Notch Stress Intensity Factors (R-NSIFs), which can be used in principle to include the residual stress effect in the fatigue assessment of welded joints. Due to the need of extremely refined meshes and to the high computational resources required by non-linear transient analyses, the R-NSIFs have been calculated in literature only by means of 2D models. It is of interest to propose new coarse-mesh-based approaches which allow residual stresses to be calculated with less computational effort. This work is aimed to investigate the level of accuracy of the Peak Stress Method in the R-NSIFs evaluation

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Rapid Calculation of Residual Notch Stress Intensity Factors (R- NSIFs) by Means of the Peak Stress Method

    Get PDF
    The intensity of the residual singular stress distribution can be quantified by the residual notch stress intensity factor (R-NSIF), which might be a useful stress parameter to include in local approaches for fatigue strength assessments of welded joints. In order to calculate the residual stress fields by means of welding process simulations, the mesh adopted in numerical models has necessarily to be very fine. Unfortunately, the nonlinear and transient behavior of the welding simulation makes numerical analyses extremely demanding in terms of computational time, particularly, if large welded structures and/or multipass welds have to be simulated. In this scenario, the use of methods aimed at reducing the computational effort to estimate local stresses and strains in welded structures can be effective. Among these, the peak stress method has been proposed to estimate the notch stress intensity factors (NSIFs) at sharp V-notches, using coarse finite element patterns. In this work, the peak stress method (PSM) has been used to calculate the R-NSIF of a full penetration welded T-joint. It has been shown that the PSM can successfully be used to estimate R-NSIFs values, provided that the stress redistribution induced by plasticity in the zone very close to the notch tip is negligible

    a numerical and experimental analysis of inconel 625 electron beam welding thermal aspects

    Get PDF
    Abstract Inconel 625, a nickel based superalloy, finds application in many fields. It is known to have a good weldability and it is often used in the as-welded conditions, heat treatments could be necessary to relief stresses. Numerous variables are known to affect the residual stresses field: welding process, joined geometry and clamping conditions. Since experimental measurements based on X-ray diffraction are not straightforward, expensive experimental work could be substituted by numerical simulation. Before performing an elastoplastic simulation, thermal analysis results are needed, first. This paper focus on the thermal analysis procedure. The analysis has been validated by means of macrographs and with thermocouples data. The heat source was successfully modelled using a superimposition of a spherical and a conical shape heat source with Gaussian power density distribution in order to reproduce the nail shape of the fusion zone. Heat source parameters were chosen so that the model would match with experimentally determined weld pool shape and temperatures. Preliminary results of the metallurgical analysis are also presented

    mechanical qualification of the hybrid metal extrusion bonding hyb process for butt welding of 4 mm plates of aa6082 t6

    Get PDF
    Abstract Hybrid Metal Extrusion & Bonding (HYB) is a novel solid state joining technique mainly developed for aluminum alloys. By the use of filler material addition and plastic deformation sound joints can be produced at operational temperatures below 400℃. Here, we present the results from an exploratory investigation of the mechanical integrity of a 4 mm AA6082-T6 HYB joint, covering both hardness, tensile and Charpy V-notch testing of different weld zones. The joint is found to be free from defects like pores, internal cavities and kissing-bonds. Still, a soft heat affected zone (HAZ) is present. The joint yield strength is 54 % of the base material, while the corresponding joint efficiency is 66 %. Therefore, there is room for further optimization of the HYB process. This work is now in progress
    corecore