720 research outputs found

    Extended bodies with quadrupole moment interacting with gravitational monopoles: reciprocity relations

    Full text link
    An exact solution of Einstein's equations representing the static gravitational field of a quasi-spherical source endowed with both mass and mass quadrupole moment is considered. It belongs to the Weyl class of solutions and reduces to the Schwarzschild solution when the quadrupole moment vanishes. The geometric properties of timelike circular orbits (including geodesics) in this spacetime are investigated. Moreover, a comparison between geodesic motion in the spacetime of a quasi-spherical source and non-geodesic motion of an extended body also endowed with both mass and mass quadrupole moment as described by Dixon's model in the gravitational field of a Schwarzschild black hole is discussed. Certain "reciprocity relations" between the source and the particle parameters are obtained, providing a further argument in favor of the acceptability of Dixon's model for extended bodies in general relativity.Comment: 14 pages, Latex svjour2.cls article class, 7 eps figure files. To appear on General Relativity and Gravitation, 200

    Multiphoton Label-Free ex-vivo imaging using a custom-built dual-wavelength microscope with chromatic aberrations compensation

    Full text link
    Label-Free Multiphoton Microscopy is a very powerful optical microscopy that can be applied to study samples with no need for exogenous fluorescent probes, keeping the main benefits of a Multiphoton approach, like longer penetration depths and intrinsic optical sectioning, while opening the possibility of serial examinations with different kinds of techniques. Among the many variations of Label-Free MPM, Higher Harmonic Generation (HHG) is one of the most intriguing due to its generally low photo-toxicity, which enables the examination of specimens particularly susceptible to photo-damages. HHG and common Two-Photon Microscopy (TPM) are well-established techniques, routinely used in several research fields. However, they require a significant amount of fine-tuning in order to be fully exploited and, usually, the optimized conditions greatly differ, making them quite difficult to perform in parallel without any compromise on the extractable information. Here we present our custom-built Multiphoton microscope capable of performing simultaneously TPM and HHG without any kind of compromise on the results thanks to two, separate, individually optimized laser sources with full chromatic aberration compensation. We also apply our setup to the examination of a plethora of ex vivo samples in order to prove the significant advantages of our approach

    Heat Sensing Receptor TRPV1 Is a Mediator of Thermotaxis in Human Spermatozoa

    Get PDF
    The molecular bases of sperm thermotaxis, the temperature-oriented cell motility, are currently under investigation. Thermal perception relies on a subclass of the transient receptor potential [TRP] channels, whose member TRPV1 is acknowledged as the heat sensing receptor. Here we investigated the involvement of TRPV1 in human sperm thermotaxis. We obtained semen samples from 16 normozoospermic subjects attending an infertility survey programme, testis biopsies from 6 patients with testicular germ cell cancer and testis fine needle aspirates from 6 patients with obstructive azoospermia undergoing assisted reproductive technologies. Expression of TRPV1 mRNA was assessed by RT-PCR. Protein expression of TRPV1 was determined by western blot, flow cytometry and immunofluorescence. Sperm motility was assessed by Sperm Class Analyser. Acrosome reaction, apoptosis and intracellular-Ca2+ content were assessed by flow cytometry. We found that TRPV1 mRNA and protein were highly expressed in the testis, in both Sertoli cells and germ-line cells. Moreover, compared to no-gradient controls at 31°C or 37°C (Ctrl 31°C and Ctrl 37°C respectively), sperm migration towards a temperature gradient of 31-37°C (T gradient) in non-capacitated conditions selected a higher number of cells (14,9 ± 4,2×106 cells T gradient vs 5,1± 0,3×106 cells Ctrl 31°C and 5,71±0,74×106 cells Ctrl 37°C; P = 0,039). Capacitation amplified the migrating capability towards the T gradient. Sperms migrated towards the T gradient showed enriched levels of both TRPV1 protein and mRNA. In addition, sperm cells were able to migrate toward a gradient of capsaicin, a specific agonist of TRPV1, whilst capsazepine, a specific agonist of TRPV1, blocked this effect. Finally, capsazepine severely blunted migration towards T gradient without abolishing. These results suggest that TRPV1 may represent a facilitating mediator of sperm thermotaxis

    Clinical applications of stereotactic radiation therapy for oligometastatic cancer patients: a disease-oriented approach

    Get PDF
    Oligometastases from solid tumors are currently recognized as a distinct clinical entity, corresponding to an intermediate state between local and widespread disease. It has been suggested that local ablative therapies (including surgery, radiofrequency ablation and radiation therapy) play an important role in this setting, in combination or not with systemic therapies, particularly in delaying disease progression and hopefully in increasing the median survival time. Stereotactic body radiation therapy (SBRT) rapidly emerged in recent years as one of the most effective and less toxic local treatment modalities for lung, liver, adrenal, brain and bone metastases. The aim of this review was to focus on its clinical role for oligometastatic disease in four major cancer subtypes: lung, breast, colorectal and prostate. On the basis of the available evidence, SBRT is able to provide high rates of local tumor control without significant toxicity. Its global impact on survival is uncertain; however, in specific subpopulations of oligometastatic patients there is a trend towards a significant improvement in progression-free and overall survival rates; these important data might be used as a platform for clinical decision-making and establish the basis for the current and future prospective trials investigating its role with or without systemic treatments

    Limited stage follicular lymphoma: Current role of radiation therapy

    Get PDF
    Radiation therapy (RT) alone has been considered for a long time as the standard therapeutic option for limited stage FL, due to its high efficacy in terms of local disease control with a quite significant proportion of “cured” patients (without further relapses at 10–15 years). Multiple therapeutic choices are currently accepted for the management of early stage FL at diagnosis, and better staging procedures as well as better systemic therapy partially modified the role of RT in this setting. RT has also changed in terms of prescribed dose as well as treatment volumes. In this review, we present and discuss the current role of RT for limited stage FL in light of the historical data and the modern RT concepts along with the possible combination with systemic therapy

    Is clinical radiosensitivity a complex genetically controlled event?

    Get PDF
    New insights into molecular mechanisms responsible for cellular radiation response are coming from recent basic radiobiological studies. Preliminary data supporting the concept of clinical radiosensitivity as a complex genetically controlled event are available, and it seems reasonable to hypothesize that genes encoding for proteins implicated in known radiation-induced pathways, such as DNA repair, could influence normal tissue and tumor response to radiotherapy. Such genes could be considered as candidates for experimental studies and as targets for innovative therapies. Variants that could influence individual radiosensitivity have been recently identified, and specific Single Nucleotide Polymorphisms have been associated to the development of different radiation effects on normal tissues. Allelic architecture of complex traits able to modify phenotypes is difficult to be established, and different grades of interaction between common or rare genetic determinants may be present and should be considered. Many different experimental strategies could be investigated in the future, such as analysis of multiple genes in large irradiated patient cohorts strictly observed for radiation effects or identification of new candidate genes, with the aim of identifying factors that could be employed in predictive testing and individualization of radiation therapy on a genetic basis
    • …
    corecore