6 research outputs found

    UNBOUND

    Get PDF
    This adjective - ex-traor-di-nary, describes the creative talents of our graduating Fashion Design class of 2009. Their accomplishments are a true celebration of the three years of passion, hard work, and dedication of our student designers. It is our hope that family, friends and the fashion industry will enjoy the creative endeavours of the next generation of Canadian fashion talent from the Fashion design program at Fanshawe College in London, Ontario.https://first.fanshawec.ca/famd_design_fashiondesign_unbound/1006/thumbnail.jp

    UNBOUND

    Get PDF
    As part of the graduating class of Fanshawe College\u27s Fashion Design program, we are leaving the comfort of our cocoon to transform ourselves into full-fledged designers. Our aspirations have developed, and our goals have become clear. Reaching the heights of new age fashion is now possible with the wings that have been provided to us through the articulate direction and constant devotion of our advisors. With all of the help and guidance that our professors have given us, we are now able to go into the industry with confidence. The creativity within the Unbound show is a reflection of the intellect, devotion, passion and strong will that our designer\u27s possess. We have collected ourselves as individuals and have successfully pulled together in a collaborative effort to attain excellence and success in tonight\u27s Unbound fashion gala. - Graduating Class of 2009https://first.fanshawec.ca/famd_design_fashiondesign_unbound/1005/thumbnail.jp

    Widespread Regulation of miRNA Biogenesis at the Dicer Step by the Cold-Inducible RNA-Binding Protein, RBM3

    Get PDF
    MicroRNAs (miRNAs) play critical roles in diverse cellular events through their effects on translation. Emerging data suggest that modulation of miRNA biogenesis at post-transcriptional steps by RNA-binding proteins is a key point of regulatory control over the expression of some miRNAs and the cellular processes they influence. However, the extent and conditions under which the miRNA pathway is amenable to regulation at posttranscriptional steps are poorly understood. Here we show that RBM3, a cold-inducible, developmentally regulated RNA-binding protein and putative protooncogene, is an essential regulator of miRNA biogenesis. Utilizing miRNA array, Northern blot, and PCR methods, we observed that over 60% of miRNAs detectable in a neuronal cell line were significantly downregulated by knockdown of RBM3. Conversely, for select miRNAs assayed by Northern blot, induction of RBM3 by overexpression or mild hypothermia increased their levels. Changes in miRNA expression were accompanied by changes in the levels of their ∼70 nt precursors, whereas primary transcript levels were unaffected. Mechanistic studies revealed that knockdown of RBM3 does not reduce Dicer activity or impede transport of pre-miRNAs into the cytoplasm. Rather, we find that RBM3 binds directly to ∼70 nt pre-miRNA intermediates and promotes / de-represses their ability as larger ribonucleoproteins (pre-miRNPs) to associate with active Dicer complexes. Our findings suggest that the processing of a majority of pre-miRNPs by Dicer is subject to an intrinsic inhibitory influence that is overcome by RBM3 expression. RBM3 may thus orchestrate changes in miRNA expression during hypothermia and other cellular stresses, and in the euthermic contexts of early development, differentiation, and oncogenesis where RBM3 expression is highly elevated. Additionally, our data suggest that temperature-dependent changes in miRNA expression mediated by RBM3 may contribute to the therapeutic effects of hypothermia, and are an important variable to consider in in vitro studies of translation-dependent cellular events

    Evaluation of a new high-dimensional miRNA profiling platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of approximately 22 nucleotide long, widely expressed RNA molecules that play important regulatory roles in eukaryotes. To investigate miRNA function, it is essential that methods to quantify their expression levels be available.</p> <p>Methods</p> <p>We evaluated a new miRNA profiling platform that utilizes Illumina's existing robust DASL chemistry as the basis for the assay. Using total RNA from five colon cancer patients and four cell lines, we evaluated the reproducibility of miRNA expression levels across replicates and with varying amounts of input RNA. The beta test version was comprised of 735 miRNA targets of Illumina's miRNA profiling application.</p> <p>Results</p> <p>Reproducibility between sample replicates within a plate was good (Spearman's correlation 0.91 to 0.98) as was the plate-to-plate reproducibility replicates run on different days (Spearman's correlation 0.84 to 0.98). To determine whether quality data could be obtained from a broad range of input RNA, data obtained from amounts ranging from 25 ng to 800 ng were compared to those obtained at 200 ng. No effect across the range of RNA input was observed.</p> <p>Conclusion</p> <p>These results indicate that very small amounts of starting material are sufficient to allow sensitive miRNA profiling using the Illumina miRNA high-dimensional platform. Nonlinear biases were observed between replicates, indicating the need for abundance-dependent normalization. Overall, the performance characteristics of the Illumina miRNA profiling system were excellent.</p
    corecore