29 research outputs found

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-

    Evolutionary Map of the Universe (EMU): 18-cm OH-maser discovery in ASKAP continuum images of the SCORPIO field

    Get PDF
    Abstract Low- and intermediate-mass stars end their life dispersing their outer layers into the circumstellar medium, during the asymptotic and post-asymptotic giant branch phases. OH masers at 18 cm offer an effective way to probe their circumstellar environment. In this work we present the discovery of seven OH maser sources likely associated with such evolved stars from the visual inspection of ASKAP continuum images. These seven sources do not emit real continuum emission, but the high sensitivity of our images allows us to detect their maser emission, resembling continuum sources. To confirm their nature, we carried out spectral-line observations with ATCA. All the sources showed the double-peaked spectra at 1612 MHz, typical of evolved stars. The detection of maser emission in continuum images can be a complementary and easy-to-use method to discover new maser sources with the large-area deep surveys conducted with the SKA precursors. The implication for radio stars studies are remarkable since pure OH maser sources (i.e. with no continuum associated) represent, at a sensitivity of 100 μJy beam1100\ \mu \mathrm{Jy\ beam}^{-1}, about 4 percent of all Galactic sources and by far the most numerous stellar population.</jats:p

    Radio continuum sources behind the Large Magellanic Cloud

    Get PDF
    We present a comprehensive multifrequency catalogue of radio sources behind the Large Magellanic Cloud (LMC) between 0.2 and 20 GHz, gathered from a combination of new and legacy radio continuum surveys. This catalogue covers an area of ∼144 deg2 at angular resolutions from 45 arcsec to ∼3 arcmin. We find 6434 discrete radio sources in total, of which 3789 are detected at two or more radio frequencies. We estimate the median spectral index (α; where Sv ∼ να) of α = −0.89 and mean of −0.88 ± 0.48 for 3636 sources detected exclusively at two frequencies (0.843 and 1.384 GHz) with similar resolution [full width at half-maximum (FWHM) ∼40–45 arcsec]. The large frequency range of the surveys makes it an effective tool to investigate Gigahertz Peak Spectrum (GPS), Compact Steep Spectrum (CSS), and Infrared Faint Radio Source (IFRS) populations within our sample. We find 10 GPS candidates with peak frequencies near 5 GHz, from which we estimate their linear size. 1866 sources from our catalogue are CSS candidates with α  &amp;lt; −0.8. We found six candidates for High Frequency Peaker (HFP) sources, whose radio fluxes peak above 5 GHz and no sources with unconstrained peaks and α  &amp;gt; 0.5. We found optical counterparts for 343 of the radio continuum sources, of which 128 have a redshift measurement. Finally, we investigate the population of 123 IFRSs found in this study

    The ASKAP-EMU Early Science Project: Radio Continuum Survey of the Small Magellanic Cloud

    Get PDF
    We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0”×30.0” and 16.3”×15.1”, respectively. The median Root Mean Squared (RMS) noise values are 186 μJy beam−1 (960 MHz) and 165 μJy beam−1 (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg2. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESP survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    ASCA and XMM-Newton observations of the Galactic supernova remnant G311.5-0.3

    No full text
    © 2017 The Author(s). We present an analysis of X-ray observations made with ASCA and XMM-Newton of the Galactic supernova remnant (SNR) G311.5-0.3. Prior infrared and radio observations of this SNR have revealed a shell-like morphology at both wavelengths. The spectral index of the radio emission is consistent with synchrotron emission, while the infrared colors are consistent with emission from shocked molecular hydrogen. Also previous CO observations have indicated an interaction between G311.5-0.3 and an adjacent molecular cloud. Our previous analysis of the pointed ASCA observation made of this SNR detected X-ray emission from the source for the first time but lacked the sensitivity and the angular resolution to rigorously investigate its X-ray properties. We have analyzed an archival XMM-Newton observation that included G311.5-0.3 in the field of view: this is the first time that XMM-Newton data has been used to probe the X-ray properties of this SNR. The XMM-Newton observation confirms that the X-ray emission from G311.5-0.3 is centrally concentrated and supports the classification of this source as a mixed-morphology SNR. In addition, our joint fitting of extracted ASCA and XMM-Newton spectra favor a thermal origin for the X-ray emission over a non-thermal origin. The spectral fitting parameters for our TBABS×APEC fit to the extracted spectra are NH= 4.63-0.85+1.87×1022cm-2and kT = 0.68-0.24+0.20keV. From these fit parameters, we derive the following values for physical parameters of the SNR: ne= 0.20 cm-3, np= 0.17 cm-3, MX= 21.4 M⊙and P/k = 3.18×106K cm-3

    Radio observations of supernova remnant G1.9+0.3

    No full text
    We present 1-10 GHz radio continuum flux density, spectral index, polarization, and rotation measure (RM) images of the youngest known Galactic supernova remnant (SNR) G1.9+0.3, using observations from the Australia Telescope Compact Array. We have conducted an expansion study spanning eight epochs between 1984 and 2017, yielding results consistent with previous expansion studies of G1.9+0.3. We find a mean radio continuum expansion rate of (0.78 ± 0.09) per cent yr−1 (or ∼8900 km s−1 at an assumed distance of 8.5 kpc), although the expansion rate varies across the SNR perimetre. In the case of the most recent epoch between 2016 and 2017, we observe faster-than-expected expansion of the northern region. We find a global spectral index for G1.9+0.3 of −0.81 ± 0.02 (76 MHz-10 GHz). Towards the northern region, however, the radio spectrum is observed to steepen significantly (∼−1). Towards the two so-called (east and west) 'ears' of G1.9+0.3, we find very different RM values of 400-600 and 100-200 rad m2, respectively. The fractional polarization of the radio continuum emission reaches (19 ± 2) per cent, consistent with other, slightly older, SNRs such as Cas A

    High-resolution observations of low-luminosity gigahertz-peaked spectrum and compact steep spectrum sources

    No full text
    We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz &lt; 1027 W Hz-1) gigahertz-peaked spectrum (GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 1025WHz-1, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology
    corecore