136 research outputs found

    Magnetic-field and doping dependence of low-energy spin fluctuations in the antiferroquadrupolar compound Ce(1-x)La(x)B(6)

    Get PDF
    CeB(6) is a model compound exhibiting antiferroquadrupolar (AFQ) order, its magnetic properties being typically interpreted within localized models. More recently, the observation of strong and sharp magnetic exciton modes forming in its antiferromagnetic (AFM) state at both ferromagnetic and AFQ wave vectors suggested a significant contribution of itinerant electrons to the spin dynamics. Here we investigate the evolution of the AFQ excitation upon the application of an external magnetic field and the substitution of Ce with non-magnetic La, both parameters known to suppress the AFM phase. We find that the exciton energy decreases proportionally to T_N upon doping. In field, its intensity is suppressed, while its energy remains constant. Its disappearance above the critical field of the AFM phase is preceded by the formation of two modes, whose energies grow linearly with magnetic field upon entering the AFQ phase. These findings suggest a crossover from itinerant to localized spin dynamics between the two phases, the coupling to heavy-fermion quasiparticles being crucial for a comprehensive description of the magnon spectrum.Comment: Extended version with a longer introduction and an additional figure. 6 pages and 5 figure

    Magnetic field dependence of the neutron spin resonance in CeB6

    Get PDF
    In zero magnetic field, the famous neutron spin resonance in the f-electron superconductor CeCoIn5 is similar to the recently discovered exciton peak in the non-superconducting CeB6. Magnetic field splits the resonance in CeCoIn5 into two components, indicating that it is a doublet. Here we employ inelastic neutron scattering (INS) to scrutinize the field dependence of spin fluctuations in CeB6. The exciton shows a markedly different behavior without any field splitting. Instead, we observe a second field-induced magnon whose energy increases with field. At the ferromagnetic zone center, however, we find only a single mode with a non-monotonic field dependence. At low fields, it is initially suppressed to zero together with the antiferromagnetic order parameter, but then reappears at higher fields inside the hidden-order phase, following the energy of an electron spin resonance (ESR). This is a unique example of a ferromagnetic resonance in a heavy-fermion metal seen by both ESR and INS consistently over a broad range of magnetic fields.Comment: 7 pages, 6 figures including one animation, accepted to Phys. Rev.

    Ternary algebras and groups

    Full text link
    We construct explicitly groups associated to specific ternary algebras which extend the Lie (super)algebras (called Lie algebras of order three). It turns out that the natural variables which appear in this construction are variables which generate the three-exterior algebra. An explicit matrix representation of a group associated to a peculiar Lie algebra of order three is constructed considering matrices with entry which belong to the three exterior algebra.Comment: 11 pages contribution to the 5th International Symposium on Quantum Theory and Symmetries (QTS5

    Tensor analyzing power Ayy in deuteron inclusive breakup at large Pt and spin structure of deuteron at short internucleonic distances

    Full text link
    The Ayy data for deuteron inclusive breakup off hydrogen and carbon at a deuteron momentum of 9.0 GeV/c and large Pt of emitted protons are presented. The large values of Ayy independent of the target mass reflect the sensitivity of the data to the deuteron spin structure. The data obtained at fixed xx and plotted versus Pt clearly demonstrate the dependence of the deuteron spin structure at short internucleonic distances on two variables. The data are compared with the calculations using Paris, CD-Bonn and Karmanov's deuteron wave functions.Comment: 4 pages, 2 figures, talk given at the SPIN2004 Conf., 10-16 Oct. 2004, Triest, Ital

    Orbifold Singularities, Lie Algebras of the Third Kind (LATKes), and Pure Yang-Mills with Matter

    Get PDF
    We discover the unique, simple Lie Algebra of the Third Kind, or LATKe, that stems from codimension 6 orbifold singularities and gives rise to a kind of Yang-Mills theory which simultaneously is pure and contains matter. The root space of the LATKe is 1-dimensional and its Dynkin diagram consists of one point. The uniqueness of the LATKe is a vacuum selection mechanism.Comment: 42 pages; version appearing in JM

    Tensor Ayy and vector Ay analyzing powers in the H(d,d')X and ^{12}C(d,d')X reactons at initial deuteron momenta of 9 GeV/c in the region of baryonic resonances excitation

    Full text link
    The angular dependence of the tensor Ayy and vector Ay analyzing powers in the inelastic scattering of deuterons with a momentum of 9.0 GeV/c on hydrogen and carbon have been measured. The range of measurements corresponds to the baryonic resonance excitation with masses 2.2--2.6 GeV/c^2. The Ayy data being in good agreement with the previous results demonstrate an approximate tt scaling up to -1.5 (GeV/c)^2. The large values of A_y show a significant role of the spin-dependent part of the elementary amplitude of the NN->NN* reaction. The results of the experiment are compared with model predictions of the plane-wave impulse approximation.Comment: 7 pages, 7 figures. submitted to Yad.Fi

    From Simplified BLG Action to the First-Quantized M-Theory

    Full text link
    Concise summary of the recent progress in the search for the world-volume action for multiple M2 branes. After a recent discovery of simplified version of BLG action, which is based on the ordinary Lie-algebra structure, does not have coupling constants and extra dynamical fields, attention should be switched to the study of M2 brane dynamics. A viable brane analogue of Polyakov formalism and Belavin-Knizhnik theorem for strings can probably be provided by Palatini formalism for 3d (super)gravity.Comment: 6 page
    corecore