We construct explicitly groups associated to specific ternary algebras which
extend the Lie (super)algebras (called Lie algebras of order three). It turns
out that the natural variables which appear in this construction are variables
which generate the three-exterior algebra. An explicit matrix representation of
a group associated to a peculiar Lie algebra of order three is constructed
considering matrices with entry which belong to the three exterior algebra.Comment: 11 pages contribution to the 5th International Symposium on Quantum
Theory and Symmetries (QTS5